Home
Class 12
MATHS
Vectors a and b makes an angle theta = (...

Vectors a and b makes an angle `theta = (2pi)/(3)`
If `|a| = 1, |b| = 2`, then `|(2a + b) xx (a + 2b)|^(2) =`

A

9

B

18

C

27

D

81

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the square of the magnitude of the vector expression \(|(2\mathbf{a} + \mathbf{b}) \times (\mathbf{a} + 2\mathbf{b})|^2\), given that \(|\mathbf{a}| = 1\), \(|\mathbf{b}| = 2\), and the angle \(\theta = \frac{2\pi}{3}\) between vectors \(\mathbf{a}\) and \(\mathbf{b}\). ### Step-by-step Solution: 1. **Identify the vectors and their magnitudes**: - Let \(|\mathbf{a}| = 1\) and \(|\mathbf{b}| = 2\). - The angle between \(\mathbf{a}\) and \(\mathbf{b}\) is \(\theta = \frac{2\pi}{3}\). 2. **Calculate the cross product**: We need to find \((2\mathbf{a} + \mathbf{b}) \times (\mathbf{a} + 2\mathbf{b})\). 3. **Use the distributive property of the cross product**: \[ (2\mathbf{a} + \mathbf{b}) \times (\mathbf{a} + 2\mathbf{b}) = 2\mathbf{a} \times \mathbf{a} + 4\mathbf{a} \times \mathbf{b} + \mathbf{b} \times \mathbf{a} + 2\mathbf{b} \times \mathbf{b} \] Since \(\mathbf{a} \times \mathbf{a} = \mathbf{0}\) and \(\mathbf{b} \times \mathbf{b} = \mathbf{0}\), we simplify this to: \[ 4\mathbf{a} \times \mathbf{b} + \mathbf{b} \times \mathbf{a} = 4\mathbf{a} \times \mathbf{b} - \mathbf{a} \times \mathbf{b} = 3\mathbf{a} \times \mathbf{b} \] 4. **Find the magnitude of the cross product**: The magnitude of \(\mathbf{a} \times \mathbf{b}\) is given by: \[ |\mathbf{a} \times \mathbf{b}| = |\mathbf{a}||\mathbf{b}|\sin(\theta) \] Substituting the values: \[ |\mathbf{a} \times \mathbf{b}| = 1 \cdot 2 \cdot \sin\left(\frac{2\pi}{3}\right) = 2 \cdot \sin\left(\frac{2\pi}{3}\right) \] We know that \(\sin\left(\frac{2\pi}{3}\right) = \sin\left(\pi - \frac{\pi}{3}\right) = \sin\left(\frac{\pi}{3}\right) = \frac{\sqrt{3}}{2}\). Therefore: \[ |\mathbf{a} \times \mathbf{b}| = 2 \cdot \frac{\sqrt{3}}{2} = \sqrt{3} \] 5. **Calculate the magnitude of the cross product of the combined vectors**: \[ |(2\mathbf{a} + \mathbf{b}) \times (\mathbf{a} + 2\mathbf{b})| = |3\mathbf{a} \times \mathbf{b}| = 3 |\mathbf{a} \times \mathbf{b}| = 3 \cdot \sqrt{3} \] 6. **Find the square of the magnitude**: \[ |(2\mathbf{a} + \mathbf{b}) \times (\mathbf{a} + 2\mathbf{b})|^2 = (3\sqrt{3})^2 = 9 \cdot 3 = 27 \] ### Final Answer: \[ |(2\mathbf{a} + \mathbf{b}) \times (\mathbf{a} + 2\mathbf{b})|^2 = 27 \]
Promotional Banner

Topper's Solved these Questions

  • ADDITION AND MULTIPLICATION OF VECTORS

    ML KHANNA|Exercise Problem Set (2) (TRUE AND FALSE) |20 Videos
  • ADDITION AND MULTIPLICATION OF VECTORS

    ML KHANNA|Exercise Problem Set (2) (FILL IN THE BLANKS) |23 Videos
  • ADDITION AND MULTIPLICATION OF VECTORS

    ML KHANNA|Exercise Problem Set (1) (FILL IN THE BLANKS ) |3 Videos
  • AREA OF CURVES

    ML KHANNA|Exercise SELF ASSESSEMENT TEST|16 Videos

Similar Questions

Explore conceptually related problems

Vectors a and b make an angle theta=(2 pi)/(3). If |vec a|=1,|vec b|=2, then {(vec a+3vec b)xx(3vec a-vec b)^(2)} is equal to 225 b.250 c.275 d.300

Vectors a and b are inclined at an angle theta=120^(@) . If |a|=1, |b|=2 , then [(a+3b)xx(3a+b)]^(2) is equal to

Vectors veca and vec b are inclined at an angle theta = 120^@ . If |veca| = |vecb| = 2 , then [(veca + 3vecb) xx (3veca + vecb)]^2 is equal to

vec a and vec b are inclined at an angle theta=30^(@) If |vec a|=1,|vec b|=2 then |(vec a+3vec b)xx(3vec a-vec b)|^(2)=

If unit vectors hat(a) and hat(b) are inclined at angle theta , then prove that |vec(a) - vec(b)| = 2 sin.(theta)/(2) .

If the line segment joining the points A(a,b) and B(a, -b) subtends an angle theta at the origin, show that cos theta = (a^2 - b^2)/(a^2 +b^2) .

ML KHANNA-ADDITION AND MULTIPLICATION OF VECTORS -Problem Set (2) (MULTIPLE CHOICE QUESTIONS)
  1. Let the pair of vector veca,vecb and vecc,veccd each determine a plane...

    Text Solution

    |

  2. In cartesian co-ordinates the points A is (x(1), y(1)) where x(1) = 1 ...

    Text Solution

    |

  3. Vectors a and b makes an angle theta = (2pi)/(3) If |a| = 1, |b| = ...

    Text Solution

    |

  4. Let veca, vecb, vec c form sides BC, CA and AB respectively of a tria...

    Text Solution

    |

  5. The vector r is equal to

    Text Solution

    |

  6. (r.i) (rxxi) + (r.j)(rxxx\j) + (r.k)(rxxk) is equal to

    Text Solution

    |

  7. If a + 2b + 3c= 0, then axxb + bxxc+c xxa is equal to

    Text Solution

    |

  8. If veca=4i+6jand vecb=3j+6k vector form of the component of a along b ...

    Text Solution

    |

  9. Let vec a=2 hat i- hat j+ hat k , vec b= hat i+2 hat j= hat ka n d ve...

    Text Solution

    |

  10. Let vec u , vec va n d vec w be such that | vec u|=1,| vec v|=2a n d|...

    Text Solution

    |

  11. a =hati +hatj-hatk, b = hati -2hatj +hatk, c = hati -hatj-hatk, then a...

    Text Solution

    |

  12. Projection of the vector 2i+3j-2k on the vector i+2j+3k is

    Text Solution

    |

  13. If a = 2i+j+2k, b=5i-3j+k, then orthogonal projection vector of a and ...

    Text Solution

    |

  14. Given two vectors a = 2i -3j+6k, b=2i+2j-k and p = ("the projection of...

    Text Solution

    |

  15. Show that the vector of magnitude sqrt(51) which makes equal anges wit...

    Text Solution

    |

  16. In a parallelopiped the ratio of the sum of the squares on the four d...

    Text Solution

    |

  17. A line makes angles alpha,beta,gammaa n ddelta with the diagonals of a...

    Text Solution

    |

  18. If vec a , vec ba n d vec c are unit vectors, then | vec a- vec b|^2+...

    Text Solution

    |

  19. The modulus of the sum of three mutually perpendicular unit vectors is

    Text Solution

    |

  20. If a + b + c = 0, |a| = 3, |b| = 5, |c| = 7, then the angle between a ...

    Text Solution

    |