Home
Class 12
MATHS
Given two vectors a = 2i -3j+6k, b=2i+2j...

Given two vectors `a = 2i -3j+6k, b=2i+2j-k` and `p = ("the projection of b on a ")/("the projection of a on b")`, then the value of p is

A

`3//7`

B

`7//3`

C

3

D

7

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( p \), which is defined as the ratio of the projection of vector \( b \) on vector \( a \) to the projection of vector \( a \) on vector \( b \). ### Step-by-Step Solution 1. **Define the Vectors**: Given: \[ \mathbf{a} = 2\mathbf{i} - 3\mathbf{j} + 6\mathbf{k} \] \[ \mathbf{b} = 2\mathbf{i} + 2\mathbf{j} - \mathbf{k} \] 2. **Calculate the Magnitude of \( \mathbf{a} \)**: \[ |\mathbf{a}| = \sqrt{(2)^2 + (-3)^2 + (6)^2} = \sqrt{4 + 9 + 36} = \sqrt{49} = 7 \] 3. **Calculate the Magnitude of \( \mathbf{b} \)**: \[ |\mathbf{b}| = \sqrt{(2)^2 + (2)^2 + (-1)^2} = \sqrt{4 + 4 + 1} = \sqrt{9} = 3 \] 4. **Calculate the Unit Vectors**: \[ \hat{\mathbf{a}} = \frac{\mathbf{a}}{|\mathbf{a}|} = \frac{2\mathbf{i} - 3\mathbf{j} + 6\mathbf{k}}{7} \] \[ \hat{\mathbf{b}} = \frac{\mathbf{b}}{|\mathbf{b}|} = \frac{2\mathbf{i} + 2\mathbf{j} - \mathbf{k}}{3} \] 5. **Calculate the Projection of \( \mathbf{b} \) on \( \mathbf{a} \)**: \[ \text{Projection of } \mathbf{b} \text{ on } \mathbf{a} = \frac{\mathbf{b} \cdot \hat{\mathbf{a}}}{|\hat{\mathbf{a}}|} = \mathbf{b} \cdot \hat{\mathbf{a}} = \frac{\mathbf{b} \cdot \mathbf{a}}{|\mathbf{a}|} \] \[ \mathbf{b} \cdot \mathbf{a} = (2)(2) + (2)(-3) + (-1)(6) = 4 - 6 - 6 = -8 \] Thus, \[ \text{Projection of } \mathbf{b} \text{ on } \mathbf{a} = \frac{-8}{7} \] 6. **Calculate the Projection of \( \mathbf{a} \) on \( \mathbf{b} \)**: \[ \text{Projection of } \mathbf{a} \text{ on } \mathbf{b} = \frac{\mathbf{a} \cdot \hat{\mathbf{b}}}{|\hat{\mathbf{b}}|} = \mathbf{a} \cdot \hat{\mathbf{b}} = \frac{\mathbf{a} \cdot \mathbf{b}}{|\mathbf{b}|} \] \[ \mathbf{a} \cdot \mathbf{b} = (2)(2) + (-3)(2) + (6)(-1) = 4 - 6 - 6 = -8 \] Thus, \[ \text{Projection of } \mathbf{a} \text{ on } \mathbf{b} = \frac{-8}{3} \] 7. **Calculate \( p \)**: \[ p = \frac{\text{Projection of } \mathbf{b} \text{ on } \mathbf{a}}{\text{Projection of } \mathbf{a} \text{ on } \mathbf{b}} = \frac{\frac{-8}{7}}{\frac{-8}{3}} = \frac{-8}{7} \cdot \frac{3}{-8} = \frac{3}{7} \] ### Final Answer \[ p = \frac{3}{7} \]
Promotional Banner

Topper's Solved these Questions

  • ADDITION AND MULTIPLICATION OF VECTORS

    ML KHANNA|Exercise Problem Set (2) (TRUE AND FALSE) |20 Videos
  • ADDITION AND MULTIPLICATION OF VECTORS

    ML KHANNA|Exercise Problem Set (2) (FILL IN THE BLANKS) |23 Videos
  • ADDITION AND MULTIPLICATION OF VECTORS

    ML KHANNA|Exercise Problem Set (1) (FILL IN THE BLANKS ) |3 Videos
  • AREA OF CURVES

    ML KHANNA|Exercise SELF ASSESSEMENT TEST|16 Videos

Similar Questions

Explore conceptually related problems

Given two vectors vec a=2i-3j+6kvec b=-2i+2j-k and lambda=(theprojectionofaonb)/(theprojectionofbona) then the value is

If bar(a)=2bar(i)-3bar(j)+6bar(k) , bar(b)=-2bar(i)+2bar(j)-bar(k) and k =(the projection of bar(a) on bar(b)) /(the projection of bar(b) on bar(a)) then the value of 3k=

If bar(a)=2bar(i)-3bar(j)+6bar(k), bar(b)=-2bar(i)+2bar(j)-bar(k) and lambda=(the projection of bar(a) on bar(b))/( the projection of bar(b) on bar(a)) then the value of lambda is

Consider the vectors a = i- 2j + k and b= 4i- 4j + 7k What is the scalar projection of a on b?

If a=i+j+k" and "b=i-j+2k then the projection of a on b is given by

If vec a=2hat i+3hat j+6hat k and vec b=3hat i+4hat j , then (projection of vec(a) on vec(b)//("projection of b on a") )

If vec(a) = 2hat(i) + 3hat(j) - 6hat(k) and vec(b) = 12 hat(j) + 5 hat(k) . then (projection of vec(a) on vec(b)//("projection of b on a") )

ML KHANNA-ADDITION AND MULTIPLICATION OF VECTORS -Problem Set (2) (MULTIPLE CHOICE QUESTIONS)
  1. Projection of the vector 2i+3j-2k on the vector i+2j+3k is

    Text Solution

    |

  2. If a = 2i+j+2k, b=5i-3j+k, then orthogonal projection vector of a and ...

    Text Solution

    |

  3. Given two vectors a = 2i -3j+6k, b=2i+2j-k and p = ("the projection of...

    Text Solution

    |

  4. Show that the vector of magnitude sqrt(51) which makes equal anges wit...

    Text Solution

    |

  5. In a parallelopiped the ratio of the sum of the squares on the four d...

    Text Solution

    |

  6. A line makes angles alpha,beta,gammaa n ddelta with the diagonals of a...

    Text Solution

    |

  7. If vec a , vec ba n d vec c are unit vectors, then | vec a- vec b|^2+...

    Text Solution

    |

  8. The modulus of the sum of three mutually perpendicular unit vectors is

    Text Solution

    |

  9. If a + b + c = 0, |a| = 3, |b| = 5, |c| = 7, then the angle between a ...

    Text Solution

    |

  10. If a, b , c are vectors such that c = a + b and a. b = 0 , then

    Text Solution

    |

  11. If a, b, c are three unit vectors such that a+b+c=0. Where 0 is null v...

    Text Solution

    |

  12. Let vec u , vec v and vec w be vector such vec u+ vec v+ vec w= ...

    Text Solution

    |

  13. If a , b, c are three vectors such that a + b + c = 0 and |a| = 1, |b|...

    Text Solution

    |

  14. If vec a , vec b ,a n d vec c are mutually perpendicular vectors o...

    Text Solution

    |

  15. If |veca| =3, |vecb|=4 and |vecc|=5 such that each is perpendicular to...

    Text Solution

    |

  16. let a, b, c be three vectors such that a. (b + c) = b. (c + a) = c. (a...

    Text Solution

    |

  17. If |a| = |b| = |a + b| = 1, then |a-b| is equal to

    Text Solution

    |

  18. If all the vectors a, b, c, a + b, b + c and a + b +c be unit vectors...

    Text Solution

    |

  19. If ( vec axx vec b)^2+( vec adot vec b)^2=144a n d| vec a|=4, then fin...

    Text Solution

    |

  20. In a right angled triangle ABC, the hypotenuse AB =p, then vec(AB).vec...

    Text Solution

    |