Home
Class 12
MATHS
let a, b, c be three vectors such that a...

let a, b, c be three vectors such that `a. (b + c) = b. (c + a) = c. (a + b) = 0 and |a| =1, |b| =4, |c| =8`, then `|a + b + c|` equals

A

13

B

81

C

9

D

5

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we will follow these steps: ### Step 1: Understanding the Given Conditions We have three vectors \( \mathbf{a}, \mathbf{b}, \mathbf{c} \) such that: 1. \( \mathbf{a} \cdot (\mathbf{b} + \mathbf{c}) = 0 \) 2. \( \mathbf{b} \cdot (\mathbf{c} + \mathbf{a}) = 0 \) 3. \( \mathbf{c} \cdot (\mathbf{a} + \mathbf{b}) = 0 \) Additionally, we know: - \( |\mathbf{a}| = 1 \) - \( |\mathbf{b}| = 4 \) - \( |\mathbf{c}| = 8 \) ### Step 2: Expanding the Dot Products From the first condition: \[ \mathbf{a} \cdot \mathbf{b} + \mathbf{a} \cdot \mathbf{c} = 0 \quad \Rightarrow \quad \mathbf{a} \cdot \mathbf{b} = -\mathbf{a} \cdot \mathbf{c} \] From the second condition: \[ \mathbf{b} \cdot \mathbf{c} + \mathbf{b} \cdot \mathbf{a} = 0 \quad \Rightarrow \quad \mathbf{b} \cdot \mathbf{c} = -\mathbf{b} \cdot \mathbf{a} \] From the third condition: \[ \mathbf{c} \cdot \mathbf{a} + \mathbf{c} \cdot \mathbf{b} = 0 \quad \Rightarrow \quad \mathbf{c} \cdot \mathbf{a} = -\mathbf{c} \cdot \mathbf{b} \] ### Step 3: Summing the Dot Products Now, we can sum these three equations: \[ (\mathbf{a} \cdot \mathbf{b} + \mathbf{a} \cdot \mathbf{c}) + (\mathbf{b} \cdot \mathbf{c} + \mathbf{b} \cdot \mathbf{a}) + (\mathbf{c} \cdot \mathbf{a} + \mathbf{c} \cdot \mathbf{b}) = 0 \] This simplifies to: \[ 2(\mathbf{a} \cdot \mathbf{b} + \mathbf{b} \cdot \mathbf{c} + \mathbf{c} \cdot \mathbf{a}) = 0 \] Thus: \[ \mathbf{a} \cdot \mathbf{b} + \mathbf{b} \cdot \mathbf{c} + \mathbf{c} \cdot \mathbf{a} = 0 \] ### Step 4: Finding the Magnitude of \( \mathbf{a} + \mathbf{b} + \mathbf{c} \) We need to find \( |\mathbf{a} + \mathbf{b} + \mathbf{c}|^2 \): \[ |\mathbf{a} + \mathbf{b} + \mathbf{c}|^2 = (\mathbf{a} + \mathbf{b} + \mathbf{c}) \cdot (\mathbf{a} + \mathbf{b} + \mathbf{c}) \] Expanding this: \[ = \mathbf{a} \cdot \mathbf{a} + \mathbf{b} \cdot \mathbf{b} + \mathbf{c} \cdot \mathbf{c} + 2(\mathbf{a} \cdot \mathbf{b} + \mathbf{b} \cdot \mathbf{c} + \mathbf{c} \cdot \mathbf{a}) \] Substituting the known magnitudes and the result from Step 3: \[ = |\mathbf{a}|^2 + |\mathbf{b}|^2 + |\mathbf{c}|^2 + 2(0) \] \[ = 1^2 + 4^2 + 8^2 \] \[ = 1 + 16 + 64 = 81 \] ### Step 5: Taking the Square Root Finally, we take the square root to find the magnitude: \[ |\mathbf{a} + \mathbf{b} + \mathbf{c}| = \sqrt{81} = 9 \] ### Final Answer Thus, \( |\mathbf{a} + \mathbf{b} + \mathbf{c}| = 9 \). ---
Promotional Banner

Topper's Solved these Questions

  • ADDITION AND MULTIPLICATION OF VECTORS

    ML KHANNA|Exercise Problem Set (2) (TRUE AND FALSE) |20 Videos
  • ADDITION AND MULTIPLICATION OF VECTORS

    ML KHANNA|Exercise Problem Set (2) (FILL IN THE BLANKS) |23 Videos
  • ADDITION AND MULTIPLICATION OF VECTORS

    ML KHANNA|Exercise Problem Set (1) (FILL IN THE BLANKS ) |3 Videos
  • AREA OF CURVES

    ML KHANNA|Exercise SELF ASSESSEMENT TEST|16 Videos

Similar Questions

Explore conceptually related problems

Let a,b,c be the three vectors such that a.(b+c)=b.(c+a)=c.(a+b)=0 and |a|=1,|b|=4,|c|=8, then |a+b+c|=

If a,b,c are vectors such that a*b=0 and a+b=c

If a, b, c are unit vectors such that a-b+c=0 then c*a is equal to

Let a,b,c be three vectors such that a ne 0 and a xx b = 2a xx c,|a| = |c| = 1, |b| = 4 and |b xx c| = sqrt(15) . If b - 2 c = lambda a, then lambda is equal ot

Suppose a, b, c are three vectors such that abs(a)=7 . If a + b + c = 0, then abs(a*b+a*c)= _______

ML KHANNA-ADDITION AND MULTIPLICATION OF VECTORS -Problem Set (2) (MULTIPLE CHOICE QUESTIONS)
  1. If vec a , vec b ,a n d vec c are mutually perpendicular vectors o...

    Text Solution

    |

  2. If |veca| =3, |vecb|=4 and |vecc|=5 such that each is perpendicular to...

    Text Solution

    |

  3. let a, b, c be three vectors such that a. (b + c) = b. (c + a) = c. (a...

    Text Solution

    |

  4. If |a| = |b| = |a + b| = 1, then |a-b| is equal to

    Text Solution

    |

  5. If all the vectors a, b, c, a + b, b + c and a + b +c be unit vectors...

    Text Solution

    |

  6. If ( vec axx vec b)^2+( vec adot vec b)^2=144a n d| vec a|=4, then fin...

    Text Solution

    |

  7. In a right angled triangle ABC, the hypotenuse AB =p, then vec(AB).vec...

    Text Solution

    |

  8. The vector 3i-2j+k,i-3j+5k and 2i+j-4k form the sides of a triangle, T...

    Text Solution

    |

  9. The three vectors 7i-11j+k, 5i+3j-2k and 12i-8j-k form

    Text Solution

    |

  10. Values of a for which the points A, B, C with position vectors 2i - j+...

    Text Solution

    |

  11. A unit vector a makes an angle pi//4 with z-axis and if a + i+j is a u...

    Text Solution

    |

  12. A unit vector in xy-plane that makes an angle of 45^0 with the vector ...

    Text Solution

    |

  13. If a = i+j-k,b=i-j+k and c is aunit vector perpendicular to the vector...

    Text Solution

    |

  14. If a=-i+j+k and b =2i+0j+k, then the vector c satisfying the conditio...

    Text Solution

    |

  15. If a = 1, -1, 1, a. b =0, a xx b = c, where c = -2, -1, 1 then the vec...

    Text Solution

    |

  16. Let bar(a)=hat j-hat k and bar(c)=hat i-hat j-hat k then the vector ba...

    Text Solution

    |

  17. If vec a is a vector of magnitude 50 and parallel to vec b= 6 vec i - ...

    Text Solution

    |

  18. Let A,B and C be the unit vectors . Suppose that A.B=A.C =0 and the a...

    Text Solution

    |

  19. Let vec(u) = hat(i) + hat(j), vec(v) = hat(i) - hat(j) and vec(w) = h...

    Text Solution

    |

  20. A unit vector perpendicular to the vector -bar(i)+2bar(j)+2bar(k) and...

    Text Solution

    |