Home
Class 12
MATHS
If a = i+j-k,b=i-j+k and c is aunit vect...

If `a = i+j-k,b=i-j+k` and c is aunit vector perpendicular to the vector a and coplanar with a and b, then a unit vector d perpendicular to both a and c is

A

`(1)/(sqrt(6)) (2i -j+k)`

B

`(1)/(sqrt2) (j+k)`

C

`(1)/(sqrt2) (i+j)`

D

`(1)/(sqrt2) (i+k)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we will follow the given conditions and perform vector operations accordingly. ### Step 1: Define the vectors Given: - \( \mathbf{a} = \mathbf{i} + \mathbf{j} - \mathbf{k} \) - \( \mathbf{b} = \mathbf{i} - \mathbf{j} + \mathbf{k} \) ### Step 2: Find a unit vector \( \mathbf{c} \) that is perpendicular to \( \mathbf{a} \) For \( \mathbf{c} \) to be perpendicular to \( \mathbf{a} \), we must have: \[ \mathbf{a} \cdot \mathbf{c} = 0 \] Let \( \mathbf{c} = x\mathbf{i} + y\mathbf{j} + z\mathbf{k} \). Then: \[ \mathbf{a} \cdot \mathbf{c} = (1)(x) + (1)(y) + (-1)(z) = x + y - z = 0 \quad \text{(Equation 1)} \] ### Step 3: Ensure \( \mathbf{c} \) is coplanar with \( \mathbf{a} \) and \( \mathbf{b} \) Since \( \mathbf{c} \) is coplanar with \( \mathbf{a} \) and \( \mathbf{b} \), we can express \( \mathbf{c} \) as: \[ \mathbf{c} = \mathbf{a} + \lambda \mathbf{b} \] Substituting the values of \( \mathbf{a} \) and \( \mathbf{b} \): \[ \mathbf{c} = (\mathbf{i} + \mathbf{j} - \mathbf{k}) + \lambda (\mathbf{i} - \mathbf{j} + \mathbf{k}) \] This simplifies to: \[ \mathbf{c} = (1 + \lambda)\mathbf{i} + (1 - \lambda)\mathbf{j} + (-1 + \lambda)\mathbf{k} \] ### Step 4: Substitute \( \mathbf{c} \) into Equation 1 Substituting \( \mathbf{c} \) into \( x + y - z = 0 \): \[ (1 + \lambda) + (1 - \lambda) - (-1 + \lambda) = 0 \] Simplifying this: \[ 1 + \lambda + 1 - \lambda + 1 - \lambda = 0 \] \[ 3 - \lambda = 0 \implies \lambda = 3 \] ### Step 5: Find \( \mathbf{c} \) Substituting \( \lambda = 3 \) back into the expression for \( \mathbf{c} \): \[ \mathbf{c} = (1 + 3)\mathbf{i} + (1 - 3)\mathbf{j} + (-1 + 3)\mathbf{k} \] \[ \mathbf{c} = 4\mathbf{i} - 2\mathbf{j} + 2\mathbf{k} \] ### Step 6: Normalize \( \mathbf{c} \) to make it a unit vector The magnitude of \( \mathbf{c} \) is: \[ |\mathbf{c}| = \sqrt{4^2 + (-2)^2 + 2^2} = \sqrt{16 + 4 + 4} = \sqrt{24} = 2\sqrt{6} \] Thus, the unit vector \( \mathbf{c} \) is: \[ \mathbf{c} = \frac{1}{2\sqrt{6}}(4\mathbf{i} - 2\mathbf{j} + 2\mathbf{k}) = \frac{2}{\sqrt{6}}\mathbf{i} - \frac{1}{\sqrt{6}}\mathbf{j} + \frac{1}{\sqrt{6}}\mathbf{k} \] ### Step 7: Find the vector \( \mathbf{d} \) which is perpendicular to both \( \mathbf{a} \) and \( \mathbf{c} \) To find \( \mathbf{d} \), we compute the cross product \( \mathbf{a} \times \mathbf{c} \): \[ \mathbf{a} \times \mathbf{c} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 1 & 1 & -1 \\ 4 & -2 & 2 \end{vmatrix} \] Calculating the determinant: \[ \mathbf{d} = \mathbf{i} \begin{vmatrix} 1 & -1 \\ -2 & 2 \end{vmatrix} - \mathbf{j} \begin{vmatrix} 1 & -1 \\ 4 & 2 \end{vmatrix} + \mathbf{k} \begin{vmatrix} 1 & 1 \\ 4 & -2 \end{vmatrix} \] Calculating each determinant: - For \( \mathbf{i} \): \( (1)(2) - (-1)(-2) = 2 - 2 = 0 \) - For \( \mathbf{j} \): \( (1)(2) - (-1)(4) = 2 + 4 = 6 \) - For \( \mathbf{k} \): \( (1)(-2) - (1)(4) = -2 - 4 = -6 \) Thus: \[ \mathbf{d} = 0\mathbf{i} - 6\mathbf{j} - 6\mathbf{k} = -6\mathbf{j} - 6\mathbf{k} \] ### Step 8: Normalize \( \mathbf{d} \) to make it a unit vector The magnitude of \( \mathbf{d} \) is: \[ |\mathbf{d}| = \sqrt{0^2 + (-6)^2 + (-6)^2} = \sqrt{36 + 36} = \sqrt{72} = 6\sqrt{2} \] Thus, the unit vector \( \mathbf{d} \) is: \[ \mathbf{d} = \frac{1}{6\sqrt{2}}(-6\mathbf{j} - 6\mathbf{k}) = -\frac{1}{\sqrt{2}}\mathbf{j} - \frac{1}{\sqrt{2}}\mathbf{k} \] ### Final Result The unit vector \( \mathbf{d} \) is: \[ \mathbf{d} = -\frac{1}{\sqrt{2}}(\mathbf{j} + \mathbf{k}) \]
Promotional Banner

Topper's Solved these Questions

  • ADDITION AND MULTIPLICATION OF VECTORS

    ML KHANNA|Exercise Problem Set (2) (TRUE AND FALSE) |20 Videos
  • ADDITION AND MULTIPLICATION OF VECTORS

    ML KHANNA|Exercise Problem Set (2) (FILL IN THE BLANKS) |23 Videos
  • ADDITION AND MULTIPLICATION OF VECTORS

    ML KHANNA|Exercise Problem Set (1) (FILL IN THE BLANKS ) |3 Videos
  • AREA OF CURVES

    ML KHANNA|Exercise SELF ASSESSEMENT TEST|16 Videos

Similar Questions

Explore conceptually related problems

If a=i+j-k,b=i-j+k and c is a unit vector perpendicular to the vector a and coplanar with a and b,then aunit vector d perpendicular to both a and c is

A unit vector c perpendicular to a=i-j and coplanar with a and b=i+k is

A unit vector perpendicular to 3i+4j" and "i-j+k is

A unit vector c perpendicular to a and coplanar with a and b, a=i+j+k, b=i+2j is given by

s.Given two vectors are i-j and i+2j the unit,vector coplanar with the two vectors and perpendicular to first is

If vec(c ) is the unit vector perpendicular to both the vector vec(a) and vec(b) , then what is another unit vector perpendicular to both the vectors vec(a) and vec(b) ?

Find a unit vector perpendicular to the vectors hat(j) + 2 hat(k) & hat(i) + hat(j)

Find a unit vector perpendicular to both the vectors hat i-2hat j+3hat k and hat i+2hat j-hat k

ML KHANNA-ADDITION AND MULTIPLICATION OF VECTORS -Problem Set (2) (MULTIPLE CHOICE QUESTIONS)
  1. A unit vector a makes an angle pi//4 with z-axis and if a + i+j is a u...

    Text Solution

    |

  2. A unit vector in xy-plane that makes an angle of 45^0 with the vector ...

    Text Solution

    |

  3. If a = i+j-k,b=i-j+k and c is aunit vector perpendicular to the vector...

    Text Solution

    |

  4. If a=-i+j+k and b =2i+0j+k, then the vector c satisfying the conditio...

    Text Solution

    |

  5. If a = 1, -1, 1, a. b =0, a xx b = c, where c = -2, -1, 1 then the vec...

    Text Solution

    |

  6. Let bar(a)=hat j-hat k and bar(c)=hat i-hat j-hat k then the vector ba...

    Text Solution

    |

  7. If vec a is a vector of magnitude 50 and parallel to vec b= 6 vec i - ...

    Text Solution

    |

  8. Let A,B and C be the unit vectors . Suppose that A.B=A.C =0 and the a...

    Text Solution

    |

  9. Let vec(u) = hat(i) + hat(j), vec(v) = hat(i) - hat(j) and vec(w) = h...

    Text Solution

    |

  10. A unit vector perpendicular to the vector -bar(i)+2bar(j)+2bar(k) and...

    Text Solution

    |

  11. The vectors a, b and c are of the same length and taken pairwise, they...

    Text Solution

    |

  12. The vector a, b, c are equal in length and taken pairwise they mak equ...

    Text Solution

    |

  13. The vector r satisfying the conditions that I. it is perrpendicular ...

    Text Solution

    |

  14. The values of lambda for which the angle between the vectors a= lambd...

    Text Solution

    |

  15. If a and b are two unit vectors inclined at an angle 2theta to each ot...

    Text Solution

    |

  16. The vectors (2hati - mhatj+ 3mk) and {(1 + m) hati -2m hatj + hatk} i...

    Text Solution

    |

  17. If the vectors a = (2, log(3)x,lambda) and b = (-3,lambdalog(3) x, log...

    Text Solution

    |

  18. The set of values of lambda for which the vectors vec a=(lambda(log)2...

    Text Solution

    |

  19. The values of x for which the angle between the vectors veca =xhati -...

    Text Solution

    |

  20. The vectors a = 2lambda^(2) i+4lambdaj+k and b=7i-2j+lambdak make an o...

    Text Solution

    |