Home
Class 12
MATHS
If a=-i+j+k and b =2i+0j+k, then the ve...

If ` a=-i+j+k and b =2i+0j+k`, then the vector c satisfying the conditions (i) that it is coplanar with a and b (ii) that it is `bot` to b and (iii) that `a.c = 7`, is

A

`-(3)/(2) i+(5)/(2)j+3k`

B

`-3i+5j+6k`

C

`-6i+0j+k`

D

`-i+2j+2k`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we need to find the vector \( \mathbf{c} \) that satisfies the following conditions: 1. It is coplanar with vectors \( \mathbf{a} \) and \( \mathbf{b} \). 2. It is perpendicular to vector \( \mathbf{b} \). 3. The dot product \( \mathbf{a} \cdot \mathbf{c} = 7 \). Given: \[ \mathbf{a} = -\mathbf{i} + \mathbf{j} + \mathbf{k} \] \[ \mathbf{b} = 2\mathbf{i} + 0\mathbf{j} + \mathbf{k} \] ### Step 1: Express \( \mathbf{c} \) in terms of \( \mathbf{a} \) and \( \mathbf{b} \) Since \( \mathbf{c} \) is coplanar with \( \mathbf{a} \) and \( \mathbf{b} \), we can express \( \mathbf{c} \) as a linear combination of \( \mathbf{a} \) and \( \mathbf{b} \): \[ \mathbf{c} = \lambda \mathbf{a} + \mu \mathbf{b} \] Substituting the values of \( \mathbf{a} \) and \( \mathbf{b} \): \[ \mathbf{c} = \lambda (-\mathbf{i} + \mathbf{j} + \mathbf{k}) + \mu (2\mathbf{i} + 0\mathbf{j} + \mathbf{k}) \] \[ \mathbf{c} = (-\lambda + 2\mu)\mathbf{i} + \lambda\mathbf{j} + (\lambda + \mu)\mathbf{k} \] ### Step 2: Apply the condition that \( \mathbf{c} \) is perpendicular to \( \mathbf{b} \) For \( \mathbf{c} \) to be perpendicular to \( \mathbf{b} \), the dot product \( \mathbf{b} \cdot \mathbf{c} \) must equal zero: \[ \mathbf{b} \cdot \mathbf{c} = (2\mathbf{i} + 0\mathbf{j} + \mathbf{k}) \cdot ((-\lambda + 2\mu)\mathbf{i} + \lambda\mathbf{j} + (\lambda + \mu)\mathbf{k}) = 0 \] Calculating the dot product: \[ 2(-\lambda + 2\mu) + 0\cdot\lambda + 1(\lambda + \mu) = 0 \] \[ -2\lambda + 4\mu + \lambda + \mu = 0 \] \[ -2\lambda + 5\mu = 0 \quad \Rightarrow \quad 2\lambda = 5\mu \quad \Rightarrow \quad \lambda = \frac{5}{2}\mu \] ### Step 3: Apply the condition \( \mathbf{a} \cdot \mathbf{c} = 7 \) Now, we need to compute the dot product \( \mathbf{a} \cdot \mathbf{c} \): \[ \mathbf{a} \cdot \mathbf{c} = (-\mathbf{i} + \mathbf{j} + \mathbf{k}) \cdot ((-\lambda + 2\mu)\mathbf{i} + \lambda\mathbf{j} + (\lambda + \mu)\mathbf{k}) \] Calculating the dot product: \[ -1(-\lambda + 2\mu) + 1\lambda + 1(\lambda + \mu) = 7 \] \[ \lambda - 2\mu + \lambda + \lambda + \mu = 7 \] \[ 3\lambda - \mu = 7 \] ### Step 4: Substitute \( \lambda \) in terms of \( \mu \) Substituting \( \lambda = \frac{5}{2}\mu \) into the equation: \[ 3\left(\frac{5}{2}\mu\right) - \mu = 7 \] \[ \frac{15}{2}\mu - \mu = 7 \] \[ \frac{15}{2}\mu - \frac{2}{2}\mu = 7 \] \[ \frac{13}{2}\mu = 7 \quad \Rightarrow \quad \mu = \frac{14}{13} \] ### Step 5: Find \( \lambda \) Now substituting \( \mu \) back to find \( \lambda \): \[ \lambda = \frac{5}{2} \cdot \frac{14}{13} = \frac{70}{26} = \frac{35}{13} \] ### Step 6: Substitute \( \lambda \) and \( \mu \) back into \( \mathbf{c} \) Now substitute \( \lambda \) and \( \mu \) into the expression for \( \mathbf{c} \): \[ \mathbf{c} = \left(-\frac{35}{13} + 2 \cdot \frac{14}{13}\right)\mathbf{i} + \frac{35}{13}\mathbf{j} + \left(\frac{35}{13} + \frac{14}{13}\right)\mathbf{k} \] Calculating each component: \[ \mathbf{c} = \left(-\frac{35}{13} + \frac{28}{13}\right)\mathbf{i} + \frac{35}{13}\mathbf{j} + \left(\frac{49}{13}\right)\mathbf{k} \] \[ \mathbf{c} = \left(-\frac{7}{13}\right)\mathbf{i} + \left(\frac{35}{13}\right)\mathbf{j} + \left(\frac{49}{13}\right)\mathbf{k} \] ### Final Result Thus, the vector \( \mathbf{c} \) is: \[ \mathbf{c} = -\frac{7}{13}\mathbf{i} + \frac{35}{13}\mathbf{j} + \frac{49}{13}\mathbf{k} \]
Promotional Banner

Topper's Solved these Questions

  • ADDITION AND MULTIPLICATION OF VECTORS

    ML KHANNA|Exercise Problem Set (2) (TRUE AND FALSE) |20 Videos
  • ADDITION AND MULTIPLICATION OF VECTORS

    ML KHANNA|Exercise Problem Set (2) (FILL IN THE BLANKS) |23 Videos
  • ADDITION AND MULTIPLICATION OF VECTORS

    ML KHANNA|Exercise Problem Set (1) (FILL IN THE BLANKS ) |3 Videos
  • AREA OF CURVES

    ML KHANNA|Exercise SELF ASSESSEMENT TEST|16 Videos

Similar Questions

Explore conceptually related problems

vec a=-i+j+k and vec b=2i+k, then the vector vec c satisfying the conditions that it is coplanar with vec a and vec b that its projection on vec b is 0

A unit vector c perpendicular to a=i-j and coplanar with a and b=i+k is

If vec a=i+j+k and vec b=j-k then find vector c, such that a xx c=b and a*c=3

If a=i+j-k,b=i-j+k and c is a unit vector perpendicular to the vector a and coplanar with a and b,then aunit vector d perpendicular to both a and c is

A unit vector c perpendicular to a and coplanar with a and b, a=i+j+k, b=i+2j is given by

Let a = i- 2j + k and b = i-j+k be two vectors. If c is a vector such that b x c = b x a and c.a = 0, then c . b is equal to:

ML KHANNA-ADDITION AND MULTIPLICATION OF VECTORS -Problem Set (2) (MULTIPLE CHOICE QUESTIONS)
  1. A unit vector in xy-plane that makes an angle of 45^0 with the vector ...

    Text Solution

    |

  2. If a = i+j-k,b=i-j+k and c is aunit vector perpendicular to the vector...

    Text Solution

    |

  3. If a=-i+j+k and b =2i+0j+k, then the vector c satisfying the conditio...

    Text Solution

    |

  4. If a = 1, -1, 1, a. b =0, a xx b = c, where c = -2, -1, 1 then the vec...

    Text Solution

    |

  5. Let bar(a)=hat j-hat k and bar(c)=hat i-hat j-hat k then the vector ba...

    Text Solution

    |

  6. If vec a is a vector of magnitude 50 and parallel to vec b= 6 vec i - ...

    Text Solution

    |

  7. Let A,B and C be the unit vectors . Suppose that A.B=A.C =0 and the a...

    Text Solution

    |

  8. Let vec(u) = hat(i) + hat(j), vec(v) = hat(i) - hat(j) and vec(w) = h...

    Text Solution

    |

  9. A unit vector perpendicular to the vector -bar(i)+2bar(j)+2bar(k) and...

    Text Solution

    |

  10. The vectors a, b and c are of the same length and taken pairwise, they...

    Text Solution

    |

  11. The vector a, b, c are equal in length and taken pairwise they mak equ...

    Text Solution

    |

  12. The vector r satisfying the conditions that I. it is perrpendicular ...

    Text Solution

    |

  13. The values of lambda for which the angle between the vectors a= lambd...

    Text Solution

    |

  14. If a and b are two unit vectors inclined at an angle 2theta to each ot...

    Text Solution

    |

  15. The vectors (2hati - mhatj+ 3mk) and {(1 + m) hati -2m hatj + hatk} i...

    Text Solution

    |

  16. If the vectors a = (2, log(3)x,lambda) and b = (-3,lambdalog(3) x, log...

    Text Solution

    |

  17. The set of values of lambda for which the vectors vec a=(lambda(log)2...

    Text Solution

    |

  18. The values of x for which the angle between the vectors veca =xhati -...

    Text Solution

    |

  19. The vectors a = 2lambda^(2) i+4lambdaj+k and b=7i-2j+lambdak make an o...

    Text Solution

    |

  20. If unit vectors veca and vecb are inclined at an angle 2 theta such th...

    Text Solution

    |