Home
Class 12
MATHS
The vector a + 3b is perpendicular to 7a...

The vector `a + 3b` is perpendicular to `7a-5b` and `a-5b` is perpendicular to `7a +3b`. The angle between a and b is

A

`pi//4`

B

`pi//6`

C

`pi//2`

D

none

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to use the property that two vectors are perpendicular if their dot product is zero. We will derive two equations based on the given conditions and then solve them to find the angle between the vectors \( \mathbf{a} \) and \( \mathbf{b} \). ### Step-by-Step Solution: 1. **Set up the first condition**: The vector \( \mathbf{a} + 3\mathbf{b} \) is perpendicular to \( 7\mathbf{a} - 5\mathbf{b} \). Therefore, we can write: \[ (\mathbf{a} + 3\mathbf{b}) \cdot (7\mathbf{a} - 5\mathbf{b}) = 0 \] 2. **Expand the dot product**: \[ \mathbf{a} \cdot (7\mathbf{a}) + \mathbf{a} \cdot (-5\mathbf{b}) + 3\mathbf{b} \cdot (7\mathbf{a}) + 3\mathbf{b} \cdot (-5\mathbf{b}) = 0 \] This simplifies to: \[ 7|\mathbf{a}|^2 - 5(\mathbf{a} \cdot \mathbf{b}) + 21(\mathbf{b} \cdot \mathbf{a}) - 15|\mathbf{b}|^2 = 0 \] Since \( \mathbf{a} \cdot \mathbf{b} = \mathbf{b} \cdot \mathbf{a} \), we can combine terms: \[ 7|\mathbf{a}|^2 + 16(\mathbf{a} \cdot \mathbf{b}) - 15|\mathbf{b}|^2 = 0 \tag{1} \] 3. **Set up the second condition**: The vector \( \mathbf{a} - 5\mathbf{b} \) is perpendicular to \( 7\mathbf{a} + 3\mathbf{b} \). Therefore: \[ (\mathbf{a} - 5\mathbf{b}) \cdot (7\mathbf{a} + 3\mathbf{b}) = 0 \] 4. **Expand the dot product**: \[ \mathbf{a} \cdot (7\mathbf{a}) + \mathbf{a} \cdot (3\mathbf{b}) - 5\mathbf{b} \cdot (7\mathbf{a}) - 5\mathbf{b} \cdot (3\mathbf{b}) = 0 \] This simplifies to: \[ 7|\mathbf{a}|^2 + 3(\mathbf{a} \cdot \mathbf{b}) - 35(\mathbf{b} \cdot \mathbf{a}) - 15|\mathbf{b}|^2 = 0 \] Again, combining terms gives: \[ 7|\mathbf{a}|^2 - 32(\mathbf{a} \cdot \mathbf{b}) - 15|\mathbf{b}|^2 = 0 \tag{2} \] 5. **Solve the system of equations**: We have two equations: - Equation (1): \( 7|\mathbf{a}|^2 + 16(\mathbf{a} \cdot \mathbf{b}) - 15|\mathbf{b}|^2 = 0 \) - Equation (2): \( 7|\mathbf{a}|^2 - 32(\mathbf{a} \cdot \mathbf{b}) - 15|\mathbf{b}|^2 = 0 \) Subtract Equation (2) from Equation (1): \[ (7|\mathbf{a}|^2 + 16(\mathbf{a} \cdot \mathbf{b}) - 15|\mathbf{b}|^2) - (7|\mathbf{a}|^2 - 32(\mathbf{a} \cdot \mathbf{b}) - 15|\mathbf{b}|^2) = 0 \] This simplifies to: \[ 48(\mathbf{a} \cdot \mathbf{b}) = 0 \] 6. **Conclusion**: Since \( 48(\mathbf{a} \cdot \mathbf{b}) = 0 \), it follows that \( \mathbf{a} \cdot \mathbf{b} = 0 \). This means that the angle \( \theta \) between \( \mathbf{a} \) and \( \mathbf{b} \) is: \[ \cos \theta = 0 \implies \theta = \frac{\pi}{2} \] ### Final Answer: The angle between vectors \( \mathbf{a} \) and \( \mathbf{b} \) is \( \frac{\pi}{2} \) radians.
Promotional Banner

Topper's Solved these Questions

  • ADDITION AND MULTIPLICATION OF VECTORS

    ML KHANNA|Exercise Problem Set (2) (TRUE AND FALSE) |20 Videos
  • ADDITION AND MULTIPLICATION OF VECTORS

    ML KHANNA|Exercise Problem Set (2) (FILL IN THE BLANKS) |23 Videos
  • ADDITION AND MULTIPLICATION OF VECTORS

    ML KHANNA|Exercise Problem Set (1) (FILL IN THE BLANKS ) |3 Videos
  • AREA OF CURVES

    ML KHANNA|Exercise SELF ASSESSEMENT TEST|16 Videos

Similar Questions

Explore conceptually related problems

The vector (vec a+3vec b) is perpendicular to (7vec a-5vec b) and (vec a-4vec b) is perpendicular to (7vec a-2vec b). The angle between vec a and vec b is :

The vector (vec a+3vec b) is perpendicular to (7vec a-5vec b) and (vec a-4vec b) is perpendicular to (7vec a-2vec b). The angle between vec a and vec b is:

The vector p=(a*c)b-(a*b)c is be perpendicular to

The vector (vec(a)+3vec(b)) is perpendicular to (7 vec(a)-5vec(b)) and (vec(a)-4vec(b)) is perpendicular to (7vec(a)-2vec(b)) . The angle between vec(a) and vec(b) is :

Let vec a,vec b, and vec c are vectors such that |vec a|=3,|vec b|=4 and |vec c|=5, and (vec a+vec b) is perpendicular to vec c,(vec b+vec c) is perpendicular to vec a and (vec c+vec a) is perpendicular to vec b. Then find the value of |vec a+vec b+vec c|

The vectors 3a5b and 2a+b are mutually perpendicular and the vectors a+4b&-a+b are also mutually perpendicular.Then the acute angle between a and b is

If (a+3b)*(7a-5b)=0 and (a-4b)*(7a-2b)=0 . Then, the angle between a and b is

If a,b,c are the three vectors whose magnitudes are respectively 3,4,5 and a is perpendicular to b+c,b is perpendicular to c+a and c is perpendicular to a+b then show that |a+b+c|=5sqrt(2)

ML KHANNA-ADDITION AND MULTIPLICATION OF VECTORS -Problem Set (2) (MULTIPLE CHOICE QUESTIONS)
  1. If \ vec a\ a n d\ vec b are two unit vectors inclined at an angle t...

    Text Solution

    |

  2. If veca and vecb are two unit vectors such that veca+2vecb and 5veca-4...

    Text Solution

    |

  3. The vector a + 3b is perpendicular to 7a-5b and a-5b is perpendicular ...

    Text Solution

    |

  4. Four points with position vectors 7i-4j+7k, i -6j+10k,-i-3j+4k and 5i-...

    Text Solution

    |

  5. a, b, c, d are the vertices of a square, then

    Text Solution

    |

  6. ai + 3j + 4k and sqrt(b) i+5k are two vectors, where a, b gt 0 are tw...

    Text Solution

    |

  7. A parallelogram is constructed on the vectors r(1) = 3a-b, r(2) = a + ...

    Text Solution

    |

  8. The vectors a =3i-2j+2k and b =-i-2k are adjacement sides of a parall...

    Text Solution

    |

  9. The length of longer diagonal of the parallelogram constructed on 5...

    Text Solution

    |

  10. OABC is a parallelogram such that OA = a, OB = b and OC =c, then the v...

    Text Solution

    |

  11. Find the length of perpendicular from the piont A(1,4,-2) to the line ...

    Text Solution

    |

  12. Let the points P, Q and R have position vectors r(1) = 3i-2j-k r(2...

    Text Solution

    |

  13. Given the vectors a=3i-j+5k" and "b=i+2j-3k. A vector c which is perp...

    Text Solution

    |

  14. IF veca, vecb, vecc are the position vectors of the vertices of an equ...

    Text Solution

    |

  15. If a, b, c, d are the position vectors of points A, B, C and D respec...

    Text Solution

    |

  16. The position vectors of four points A, B, C, D lying in a plane are a,...

    Text Solution

    |

  17. Area of parallelogram whose adjacent sides of a = i +2j+3k, b = 3i-2j...

    Text Solution

    |

  18. The vector A = 3i-k, b=i+2j are adjacent sides of a parallelogram . It...

    Text Solution

    |

  19. The area of a parallelogram having diagonals a=3i+j-2k" and "b=i-3j+4k...

    Text Solution

    |

  20. The area of a parallelogram is 5sqrt(3) then its diagonals are given b...

    Text Solution

    |