Home
Class 12
MATHS
IF the vectors a, b, c are non-coplanar,...

IF the vectors a, b, c are non-coplanar, then ` a xx b, b xx c and c xx a` are ............

Text Solution

AI Generated Solution

The correct Answer is:
To determine whether the vectors \( \mathbf{a} \times \mathbf{b} \), \( \mathbf{b} \times \mathbf{c} \), and \( \mathbf{c} \times \mathbf{a} \) are coplanar or non-coplanar given that the vectors \( \mathbf{a} \), \( \mathbf{b} \), and \( \mathbf{c} \) are non-coplanar, we can use the concept of scalar triple product. ### Step-by-Step Solution: 1. **Understanding Non-Coplanarity**: Since the vectors \( \mathbf{a} \), \( \mathbf{b} \), and \( \mathbf{c} \) are non-coplanar, the scalar triple product \( [\mathbf{a}, \mathbf{b}, \mathbf{c}] \) is non-zero. This means that the volume formed by these three vectors is not zero. **Hint**: Remember that non-coplanar vectors form a three-dimensional volume. 2. **Forming Scalar Triple Products**: We need to evaluate the scalar triple product of the vectors \( \mathbf{a} \times \mathbf{b} \), \( \mathbf{b} \times \mathbf{c} \), and \( \mathbf{c} \times \mathbf{a} \). The condition for coplanarity of three vectors \( \mathbf{u}, \mathbf{v}, \mathbf{w} \) is given by \( [\mathbf{u}, \mathbf{v}, \mathbf{w}] = \mathbf{u} \cdot (\mathbf{v} \times \mathbf{w}) = 0 \). 3. **Calculating the Scalar Triple Product**: We can express the scalar triple product as: \[ [\mathbf{a} \times \mathbf{b}, \mathbf{b} \times \mathbf{c}, \mathbf{c} \times \mathbf{a}] = (\mathbf{a} \times \mathbf{b}) \cdot ((\mathbf{b} \times \mathbf{c}) \times (\mathbf{c} \times \mathbf{a})) \] 4. **Using Vector Triple Product Identity**: We can apply the vector triple product identity: \[ \mathbf{x} \times (\mathbf{y} \times \mathbf{z}) = (\mathbf{x} \cdot \mathbf{z}) \mathbf{y} - (\mathbf{x} \cdot \mathbf{y}) \mathbf{z} \] Let \( \mathbf{p} = \mathbf{b} \times \mathbf{c} \). Then: \[ (\mathbf{b} \times \mathbf{c}) \times (\mathbf{c} \times \mathbf{a}) = (\mathbf{b} \cdot \mathbf{a}) \mathbf{c} - (\mathbf{c} \cdot \mathbf{a}) \mathbf{b} \] 5. **Substituting Back**: Substitute this back into our expression: \[ [\mathbf{a} \times \mathbf{b}, \mathbf{b} \times \mathbf{c}, \mathbf{c} \times \mathbf{a}] = (\mathbf{a} \times \mathbf{b}) \cdot ((\mathbf{b} \cdot \mathbf{a}) \mathbf{c} - (\mathbf{c} \cdot \mathbf{a}) \mathbf{b}) \] 6. **Evaluating the Result**: Since \( \mathbf{a} \), \( \mathbf{b} \), and \( \mathbf{c} \) are non-coplanar, the scalar triple product \( [\mathbf{a}, \mathbf{b}, \mathbf{c}] \) is non-zero. Therefore, the resulting expression from the above step will also be non-zero. 7. **Conclusion**: Since the scalar triple product \( [\mathbf{a} \times \mathbf{b}, \mathbf{b} \times \mathbf{c}, \mathbf{c} \times \mathbf{a}] \) is non-zero, the vectors \( \mathbf{a} \times \mathbf{b} \), \( \mathbf{b} \times \mathbf{c} \), and \( \mathbf{c} \times \mathbf{a} \) are non-coplanar. ### Final Answer: The vectors \( \mathbf{a} \times \mathbf{b} \), \( \mathbf{b} \times \mathbf{c} \), and \( \mathbf{c} \times \mathbf{a} \) are **non-coplanar**.
Promotional Banner

Topper's Solved these Questions

  • ADDITION AND MULTIPLICATION OF VECTORS

    ML KHANNA|Exercise Problem Set (4) (MULTIPLE CHOICE QUESTIONS) |8 Videos
  • ADDITION AND MULTIPLICATION OF VECTORS

    ML KHANNA|Exercise Self Assessment Test (MULTIPLE CHOICE QUESTIONS)|69 Videos
  • ADDITION AND MULTIPLICATION OF VECTORS

    ML KHANNA|Exercise Problem Set (3) (TRUE AND FALSE) |3 Videos
  • AREA OF CURVES

    ML KHANNA|Exercise SELF ASSESSEMENT TEST|16 Videos

Similar Questions

Explore conceptually related problems

If vec a,vec c,vec d are non-coplanar vectors,then vec d*{vec a xx[vec b xx(vec c xxvec d)]} is equal to

For any three vectors a,b,c the value of a xx(b xx c)+b xx(c xx a)+c xx(a xx b) is

vec a, vec b, vec c are non-coplanar vectors, express vec a xx (vec b xxvec c) as a linear combination of vec a, vec b, vec c

If a+b+c=0 , then which of the following is/are correct? 1. a,b,c are coplanar 2. a xx b=b xx c=c xx a Select the correct answer using the codes given below

Property 5: Vectors a; b and c are non- coplanar iff vectors a'; b' and c' are non- coplanar.

If vectors b,c and d are not coplanar,then prove that vector (vec a xxvec b)xx(vec c xxvec d)+(vec a xxvec c)xx(vec d xxvec b)+(vec a xxvec d)xx(vec b xxvec c) is parallel to vec a .