Home
Class 12
MATHS
cos^(-1)(cos"(5pi)/4)=...

`cos^(-1)(cos"(5pi)/4)=`

A

`-pi/4`

B

`pi/4`

C

`(3pi)/4`

D

`(5pi)/4`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \( \cos^{-1}(\cos(5\pi/4)) \), we will follow these steps: ### Step 1: Identify the Principal Value Range The principal value of the inverse cosine function, \( \cos^{-1}(x) \), is defined in the range \( [0, \pi] \). ### Step 2: Analyze the Angle The angle \( 5\pi/4 \) is greater than \( \pi \). To find an equivalent angle within the principal value range, we can express \( 5\pi/4 \) in terms of \( \pi \): \[ 5\pi/4 = \pi + \pi/4 \] ### Step 3: Use the Cosine Addition Formula Using the property of cosine: \[ \cos(\pi + \theta) = -\cos(\theta) \] we can rewrite: \[ \cos(5\pi/4) = \cos(\pi + \pi/4) = -\cos(\pi/4) \] ### Step 4: Find the Cosine Value Now, we need to find \( \cos(\pi/4) \): \[ \cos(\pi/4) = \frac{\sqrt{2}}{2} \] Thus, \[ \cos(5\pi/4) = -\frac{\sqrt{2}}{2} \] ### Step 5: Substitute Back into the Inverse Function Now we substitute this back into the inverse cosine function: \[ \cos^{-1}(\cos(5\pi/4)) = \cos^{-1}(-\frac{\sqrt{2}}{2}) \] ### Step 6: Determine the Angle for the Inverse Cosine The angle whose cosine is \( -\frac{\sqrt{2}}{2} \) within the range \( [0, \pi] \) is: \[ \theta = \frac{3\pi}{4} \] ### Final Answer Thus, we have: \[ \cos^{-1}(\cos(5\pi/4)) = \frac{3\pi}{4} \] ### Summary The final answer is: \[ \frac{3\pi}{4} \]
Promotional Banner

Topper's Solved these Questions

  • INVERSE CIRCULAR FUNCTIONS

    ML KHANNA|Exercise Problem Set (1)(TRUE AND FALSE)|2 Videos
  • INVERSE CIRCULAR FUNCTIONS

    ML KHANNA|Exercise Problem Set (2)(MULTIPLE CHOICE QUESTIONS)|46 Videos
  • INTEGRATION

    ML KHANNA|Exercise SELF ASSESSMENT TESET|10 Videos
  • LIMITS, CONTINUITY AND DIFFERENTIABILITY

    ML KHANNA|Exercise MISCELLANEOUS EXERCISE (ASSERTION/ REASONS) |3 Videos

Similar Questions

Explore conceptually related problems

cos^(-1)(cos((5 pi)/(4)))

Evaluate each of the following: cos^(-1){cos(-(pi)/(4))}( ii) cos^(-1)((cos(5 pi))/(4)) (iii) cos^(-1)((cos(4 pi))/(3))

cos^(-1)(cos(5 pi)/(3))=

cos^(-1) (cos ((5pi)/3))=

sin^(-1)(cos((5pi)/4)) is equal to

cos^(-1)(cos(5 pi/(3))+sin^(-1)(cos(5 pi/(3))=

"cos"^(-1)("cos"((7pi)/(5)))=

ML KHANNA-INVERSE CIRCULAR FUNCTIONS -Self Assessment Test
  1. cos^(-1)(cos"(5pi)/4)=

    Text Solution

    |

  2. If cos^(-1)" 1/x=theta , " then " tan theta=

    Text Solution

    |

  3. If A tan^(-1) x ,x in R then the value of sin 2A is

    Text Solution

    |

  4. Write the value of sin(cot^(-1)x) .

    Text Solution

    |

  5. The value of cos^(-1){(sqrt(1-sinx)+sqrt(1+sinx))/(sqrt(1-sinx -sqr...

    Text Solution

    |

  6. The value of sin^(-1) x+cos^(-1)x(absx le 1) is

    Text Solution

    |

  7. If sin(sin^(-1)1/5+cos^(-1)x) =1 then x is equal to

    Text Solution

    |

  8. The value of cos^(-1)(-1)-sin^(-1)(1) is- pi b. pi/2 c. (3pi)/2 d. -(3...

    Text Solution

    |

  9. If sin^(-1) sqrt(x^2+2x+1sec^(-1)) sqrt(x^2+2x+1) = pi/2, x ne 0 then ...

    Text Solution

    |

  10. tan^(-1) ""1/3+tan^(-1)""2/9+tan^(-1)"" 4/33 +….oo is equal to

    Text Solution

    |

  11. Find the set of values of parameter a so that the equation (sin^(-1)x)...

    Text Solution

    |

  12. If sin(sin^(-1)1/5+cos^(-1)x) =1 then x is equal to

    Text Solution

    |

  13. The value of cot[cos^(-1)(7/25)] is

    Text Solution

    |

  14. If x takes negative permissible vlaue then sin^(-1)x=

    Text Solution

    |

  15. cot^(-1)9 + cos^(-1)sqrt(41)/4=

    Text Solution

    |

  16. The principal value of "sin"^(-1)("sin""(5pi)/(3)) is

    Text Solution

    |

  17. The solution set of the equation sin^(-1)x=2 tan^(-1)x is

    Text Solution

    |

  18. If sin^(-1)x+sin^(-1)y+sin^(-1)z=(pi)/(2), then the value of x^(2)+y^(...

    Text Solution

    |

  19. cos(tan^(-1)((1)/(3))+tan^(-1)((1)/(2)))=

    Text Solution

    |

  20. sin^(-1)" 1/sqrt5 +cot^(-1)3 is equal to

    Text Solution

    |

  21. If sin^(-1)((2a)/(1+a^2))+sin^(-1)((2b)/(1+b^2))=2tan^(-1)x , then x i...

    Text Solution

    |