Home
Class 12
MATHS
The value of cos(2cos^(-1)x+sin^(-1)x)at...

The value of `cos(2cos^(-1)x+sin^(-1)x)at x=1//5` is

A

`-(2sqrt6)/5`

B

`(2sqrt5)/5`

C

`(3sqrt5)/5`

D

none

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of \( \cos(2 \cos^{-1} x + \sin^{-1} x) \) at \( x = \frac{1}{5} \), we will follow these steps: ### Step 1: Identify the expression We need to evaluate: \[ \cos(2 \cos^{-1} x + \sin^{-1} x) \] at \( x = \frac{1}{5} \). ### Step 2: Use the identity for inverse functions We know that: \[ \cos^{-1} x + \sin^{-1} x = \frac{\pi}{2} \] Thus, we can rewrite our expression: \[ \cos(2 \cos^{-1} x + \sin^{-1} x) = \cos(2 \cos^{-1} x + \frac{\pi}{2}) \] ### Step 3: Apply the cosine addition formula Using the cosine addition formula: \[ \cos(a + b) = \cos a \cos b - \sin a \sin b \] we can substitute \( a = 2 \cos^{-1} x \) and \( b = \frac{\pi}{2} \): \[ \cos(2 \cos^{-1} x + \frac{\pi}{2}) = \cos(2 \cos^{-1} x) \cos\left(\frac{\pi}{2}\right) - \sin(2 \cos^{-1} x) \sin\left(\frac{\pi}{2}\right) \] Since \( \cos\left(\frac{\pi}{2}\right) = 0 \) and \( \sin\left(\frac{\pi}{2}\right) = 1 \), this simplifies to: \[ -\sin(2 \cos^{-1} x) \] ### Step 4: Use the double angle formula for sine We can use the double angle formula: \[ \sin(2\theta) = 2 \sin \theta \cos \theta \] where \( \theta = \cos^{-1} x \). Therefore: \[ \sin(2 \cos^{-1} x) = 2 \sin(\cos^{-1} x) \cos(\cos^{-1} x) \] ### Step 5: Find \( \sin(\cos^{-1} x) \) and \( \cos(\cos^{-1} x) \) From the definition of inverse cosine: \[ \cos(\cos^{-1} x) = x \] To find \( \sin(\cos^{-1} x) \), we use the identity: \[ \sin(\theta) = \sqrt{1 - \cos^2(\theta)} = \sqrt{1 - x^2} \] Thus: \[ \sin(\cos^{-1} x) = \sqrt{1 - x^2} \] ### Step 6: Substitute back into the sine double angle formula Now substituting these values back: \[ \sin(2 \cos^{-1} x) = 2 \sqrt{1 - x^2} \cdot x \] Therefore: \[ -\sin(2 \cos^{-1} x) = -2x\sqrt{1 - x^2} \] ### Step 7: Substitute \( x = \frac{1}{5} \) Now we substitute \( x = \frac{1}{5} \): \[ -\sin(2 \cos^{-1} \frac{1}{5}) = -2 \cdot \frac{1}{5} \cdot \sqrt{1 - \left(\frac{1}{5}\right)^2} \] Calculating \( 1 - \left(\frac{1}{5}\right)^2 \): \[ 1 - \frac{1}{25} = \frac{24}{25} \] Thus: \[ \sqrt{1 - \left(\frac{1}{5}\right)^2} = \sqrt{\frac{24}{25}} = \frac{\sqrt{24}}{5} = \frac{2\sqrt{6}}{5} \] Now substituting back: \[ -2 \cdot \frac{1}{5} \cdot \frac{2\sqrt{6}}{5} = -\frac{4\sqrt{6}}{25} \] ### Final Answer Thus, the value of \( \cos(2 \cos^{-1} x + \sin^{-1} x) \) at \( x = \frac{1}{5} \) is: \[ -\frac{4\sqrt{6}}{25} \]
Promotional Banner

Topper's Solved these Questions

  • INVERSE CIRCULAR FUNCTIONS

    ML KHANNA|Exercise Problem Set (1)(TRUE AND FALSE)|2 Videos
  • INVERSE CIRCULAR FUNCTIONS

    ML KHANNA|Exercise Problem Set (2)(MULTIPLE CHOICE QUESTIONS)|46 Videos
  • INTEGRATION

    ML KHANNA|Exercise SELF ASSESSMENT TESET|10 Videos
  • LIMITS, CONTINUITY AND DIFFERENTIABILITY

    ML KHANNA|Exercise MISCELLANEOUS EXERCISE (ASSERTION/ REASONS) |3 Videos

Similar Questions

Explore conceptually related problems

Find the value of cos(2cos^(-1)x+sin^(-1)x) at x=(1)/(5), where 0<=pi and -(pi)/(2)<=sin^(-1)x<=(pi)/(2)

The value of cos(2cos^-1x+sin^-1x) at x= 1/5 is (A) 1 (B) 3 (C) 0 (D) (-2sqrt(6))/5

If x=(1)/(5) , the value of cos(cos^(-1)x+2sin^(-1)x) is :

Evaluate :cos(2cos^(-1)x+sin^(-1)x) at x=(1)/(5)

Find the value of cos( 2 cos^(-1) x + sin^(-1) x) " when " x = 1/5

Find the value of cos[cos^-1 x+sin^-1 x] at x =1/5

Find the value of sin ( 2 cos^(-1) x + sin^(-1) x) " when " x = 1/5

ML KHANNA-INVERSE CIRCULAR FUNCTIONS -Self Assessment Test
  1. The value of cos(2cos^(-1)x+sin^(-1)x)at x=1//5 is

    Text Solution

    |

  2. If cos^(-1)" 1/x=theta , " then " tan theta=

    Text Solution

    |

  3. If A tan^(-1) x ,x in R then the value of sin 2A is

    Text Solution

    |

  4. Write the value of sin(cot^(-1)x) .

    Text Solution

    |

  5. The value of cos^(-1){(sqrt(1-sinx)+sqrt(1+sinx))/(sqrt(1-sinx -sqr...

    Text Solution

    |

  6. The value of sin^(-1) x+cos^(-1)x(absx le 1) is

    Text Solution

    |

  7. If sin(sin^(-1)1/5+cos^(-1)x) =1 then x is equal to

    Text Solution

    |

  8. The value of cos^(-1)(-1)-sin^(-1)(1) is- pi b. pi/2 c. (3pi)/2 d. -(3...

    Text Solution

    |

  9. If sin^(-1) sqrt(x^2+2x+1sec^(-1)) sqrt(x^2+2x+1) = pi/2, x ne 0 then ...

    Text Solution

    |

  10. tan^(-1) ""1/3+tan^(-1)""2/9+tan^(-1)"" 4/33 +….oo is equal to

    Text Solution

    |

  11. Find the set of values of parameter a so that the equation (sin^(-1)x)...

    Text Solution

    |

  12. If sin(sin^(-1)1/5+cos^(-1)x) =1 then x is equal to

    Text Solution

    |

  13. The value of cot[cos^(-1)(7/25)] is

    Text Solution

    |

  14. If x takes negative permissible vlaue then sin^(-1)x=

    Text Solution

    |

  15. cot^(-1)9 + cos^(-1)sqrt(41)/4=

    Text Solution

    |

  16. The principal value of "sin"^(-1)("sin""(5pi)/(3)) is

    Text Solution

    |

  17. The solution set of the equation sin^(-1)x=2 tan^(-1)x is

    Text Solution

    |

  18. If sin^(-1)x+sin^(-1)y+sin^(-1)z=(pi)/(2), then the value of x^(2)+y^(...

    Text Solution

    |

  19. cos(tan^(-1)((1)/(3))+tan^(-1)((1)/(2)))=

    Text Solution

    |

  20. sin^(-1)" 1/sqrt5 +cot^(-1)3 is equal to

    Text Solution

    |

  21. If sin^(-1)((2a)/(1+a^2))+sin^(-1)((2b)/(1+b^2))=2tan^(-1)x , then x i...

    Text Solution

    |