Home
Class 12
MATHS
If sin^(-1) sqrt(x^2+2x+1sec^(-1)) sqrt(...

If `sin^(-1) sqrt(x^2+2x+1sec^(-1)) sqrt(x^2+2x+1) = pi/2, x ne 0` then the value of `2sec^(-1) x/2+sin^(-1) x/2=`

A

`-pi/2`

B

`-(3pi)/2, pi/2`

C

`(3pi)/2`

D

`-(3pi)/2`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given problem step by step, we start with the equation: \[ \sin^{-1}(\sqrt{x^2 + 2x + 1}) + \sec^{-1}(\sqrt{x^2 + 2x + 1}) = \frac{\pi}{2} \] ### Step 1: Simplify the expression inside the inverse functions Notice that: \[ \sqrt{x^2 + 2x + 1} = \sqrt{(x + 1)^2} = |x + 1| \] Since \(x \neq 0\), we consider two cases for \(x + 1\): when \(x + 1 \geq 0\) and \(x + 1 < 0\). ### Step 2: Analyze the cases 1. **Case 1**: \(x + 1 \geq 0\) (i.e., \(x \geq -1\)) - Here, \(|x + 1| = x + 1\). - The equation becomes: \[ \sin^{-1}(x + 1) + \sec^{-1}(x + 1) = \frac{\pi}{2} \] 2. **Case 2**: \(x + 1 < 0\) (i.e., \(x < -1\)) - Here, \(|x + 1| = -(x + 1) = -x - 1\). - The equation becomes: \[ \sin^{-1}(-x - 1) + \sec^{-1}(-x - 1) = \frac{\pi}{2} \] ### Step 3: Use the identity From the identity \(\sin^{-1}(y) + \sec^{-1}(y) = \frac{\pi}{2}\), we can conclude that: \[ \sec^{-1}(y) = \frac{\pi}{2} - \sin^{-1}(y) \] This implies that: \[ y = \sqrt{x^2 + 2x + 1} = |x + 1| \] ### Step 4: Solve for \(x\) From the equation: \[ \sqrt{x^2 + 2x + 1} = 1 \] Squaring both sides gives: \[ x^2 + 2x + 1 = 1 \] This simplifies to: \[ x^2 + 2x = 0 \] Factoring out \(x\): \[ x(x + 2) = 0 \] Thus, \(x = 0\) or \(x = -2\). Since \(x \neq 0\), we have: \[ x = -2 \] ### Step 5: Find the required expression Now we need to evaluate: \[ 2 \sec^{-1}\left(\frac{x}{2}\right) + \sin^{-1}\left(\frac{x}{2}\right) \] Substituting \(x = -2\): \[ 2 \sec^{-1}\left(\frac{-2}{2}\right) + \sin^{-1}\left(\frac{-2}{2}\right) = 2 \sec^{-1}(-1) + \sin^{-1}(-1) \] ### Step 6: Calculate the values - \(\sec^{-1}(-1) = \pi\) (since \(\sec(\pi) = -1\)) - \(\sin^{-1}(-1) = -\frac{\pi}{2}\) Thus, we have: \[ 2 \cdot \pi + \left(-\frac{\pi}{2}\right) = 2\pi - \frac{\pi}{2} = \frac{4\pi}{2} - \frac{\pi}{2} = \frac{3\pi}{2} \] ### Final Answer The value of \(2 \sec^{-1}\left(\frac{x}{2}\right) + \sin^{-1}\left(\frac{x}{2}\right)\) is: \[ \frac{3\pi}{2} \] ---
Promotional Banner

Topper's Solved these Questions

  • INVERSE CIRCULAR FUNCTIONS

    ML KHANNA|Exercise Problem Set (1)(TRUE AND FALSE)|2 Videos
  • INVERSE CIRCULAR FUNCTIONS

    ML KHANNA|Exercise Problem Set (2)(MULTIPLE CHOICE QUESTIONS)|46 Videos
  • INTEGRATION

    ML KHANNA|Exercise SELF ASSESSMENT TESET|10 Videos
  • LIMITS, CONTINUITY AND DIFFERENTIABILITY

    ML KHANNA|Exercise MISCELLANEOUS EXERCISE (ASSERTION/ REASONS) |3 Videos

Similar Questions

Explore conceptually related problems

sin^(-1)sqrt(x^(2)+2x+1)+sec^(-1)sqrt(x^(2)+2x+1)=(pi)/(2);x!=0 then the value of 2sec^(-1)((x)/(2))+sin^(-1)((x)/(2)) is equal to

If sqrt((sec^(2)A-1))=x , then the value of x is

If (sin^(-1)x)^(2)-(cos^(-1)x)^(2)=a , 0 lt x lt 1 , a ne 0 , then the value of 2x^(2)-1 is

If f(x) = 2 sin^(-1) sqrt(1-x) + sin^(-1)(2 sqrt(x (1-x))) where x in (0, 1/2) , then f'(x) has the value equal to (i) 2/(xsqrt(1-x)) (ii) 0 (iii) -2/(xsqrt(1-x)) (iv) pi

sin^(-1)(2x sqrt(1-x^(2))),x in[(1)/(sqrt(2)),1] is equal to

tan^(-1)sqrt((1-x)/(1+x))+sin^(-1)2x sqrt(1-x^(2))=(5 pi)/(12) if x=

ML KHANNA-INVERSE CIRCULAR FUNCTIONS -Self Assessment Test
  1. If sin^(-1) sqrt(x^2+2x+1sec^(-1)) sqrt(x^2+2x+1) = pi/2, x ne 0 then ...

    Text Solution

    |

  2. If cos^(-1)" 1/x=theta , " then " tan theta=

    Text Solution

    |

  3. If A tan^(-1) x ,x in R then the value of sin 2A is

    Text Solution

    |

  4. Write the value of sin(cot^(-1)x) .

    Text Solution

    |

  5. The value of cos^(-1){(sqrt(1-sinx)+sqrt(1+sinx))/(sqrt(1-sinx -sqr...

    Text Solution

    |

  6. The value of sin^(-1) x+cos^(-1)x(absx le 1) is

    Text Solution

    |

  7. If sin(sin^(-1)1/5+cos^(-1)x) =1 then x is equal to

    Text Solution

    |

  8. The value of cos^(-1)(-1)-sin^(-1)(1) is- pi b. pi/2 c. (3pi)/2 d. -(3...

    Text Solution

    |

  9. If sin^(-1) sqrt(x^2+2x+1sec^(-1)) sqrt(x^2+2x+1) = pi/2, x ne 0 then ...

    Text Solution

    |

  10. tan^(-1) ""1/3+tan^(-1)""2/9+tan^(-1)"" 4/33 +….oo is equal to

    Text Solution

    |

  11. Find the set of values of parameter a so that the equation (sin^(-1)x)...

    Text Solution

    |

  12. If sin(sin^(-1)1/5+cos^(-1)x) =1 then x is equal to

    Text Solution

    |

  13. The value of cot[cos^(-1)(7/25)] is

    Text Solution

    |

  14. If x takes negative permissible vlaue then sin^(-1)x=

    Text Solution

    |

  15. cot^(-1)9 + cos^(-1)sqrt(41)/4=

    Text Solution

    |

  16. The principal value of "sin"^(-1)("sin""(5pi)/(3)) is

    Text Solution

    |

  17. The solution set of the equation sin^(-1)x=2 tan^(-1)x is

    Text Solution

    |

  18. If sin^(-1)x+sin^(-1)y+sin^(-1)z=(pi)/(2), then the value of x^(2)+y^(...

    Text Solution

    |

  19. cos(tan^(-1)((1)/(3))+tan^(-1)((1)/(2)))=

    Text Solution

    |

  20. sin^(-1)" 1/sqrt5 +cot^(-1)3 is equal to

    Text Solution

    |

  21. If sin^(-1)((2a)/(1+a^2))+sin^(-1)((2b)/(1+b^2))=2tan^(-1)x , then x i...

    Text Solution

    |