Home
Class 12
MATHS
If cos^(-1) x-sin^(-1)x=0, then x is equ...

If `cos^(-1) x-sin^(-1)x=0`, then x is equal to

A

`sqrt2`

B

`1/sqrt2`

C

1

D

`pm 1/sqrt2`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( \cos^{-1} x - \sin^{-1} x = 0 \), we can follow these steps: ### Step 1: Rewrite the equation We start with the given equation: \[ \cos^{-1} x - \sin^{-1} x = 0 \] This can be rewritten as: \[ \cos^{-1} x = \sin^{-1} x \] ### Step 2: Use the identity We know from trigonometric identities that: \[ \sin^{-1} x + \cos^{-1} x = \frac{\pi}{2} \] Using this identity, we can substitute \( \sin^{-1} x \) in our rewritten equation: \[ \sin^{-1} x = \frac{\pi}{2} - \cos^{-1} x \] Since we have \( \cos^{-1} x = \sin^{-1} x \), we can substitute \( \sin^{-1} x \) into the identity: \[ \sin^{-1} x + \sin^{-1} x = \frac{\pi}{2} \] This simplifies to: \[ 2 \sin^{-1} x = \frac{\pi}{2} \] ### Step 3: Solve for \( \sin^{-1} x \) Now, we divide both sides by 2: \[ \sin^{-1} x = \frac{\pi}{4} \] ### Step 4: Find \( x \) To find \( x \), we take the sine of both sides: \[ x = \sin\left(\frac{\pi}{4}\right) \] Using the known value of sine at \( \frac{\pi}{4} \): \[ x = \frac{1}{\sqrt{2}} = \frac{\sqrt{2}}{2} \] ### Final Answer Thus, the value of \( x \) is: \[ \boxed{\frac{\sqrt{2}}{2}} \] ---
Promotional Banner

Topper's Solved these Questions

  • INVERSE CIRCULAR FUNCTIONS

    ML KHANNA|Exercise Problem Set (1)(TRUE AND FALSE)|2 Videos
  • INVERSE CIRCULAR FUNCTIONS

    ML KHANNA|Exercise Problem Set (2)(MULTIPLE CHOICE QUESTIONS)|46 Videos
  • INTEGRATION

    ML KHANNA|Exercise SELF ASSESSMENT TESET|10 Videos
  • LIMITS, CONTINUITY AND DIFFERENTIABILITY

    ML KHANNA|Exercise MISCELLANEOUS EXERCISE (ASSERTION/ REASONS) |3 Videos

Similar Questions

Explore conceptually related problems

If 4sin^(-1)x+cos^(-1)x=pi , then x is equal to

If 4 "sin"^(-1)x+"cos"^(-1)x=pi , then x is equal to

If cos(sin^(-1)(3/5)+cos^(-1)x)=0 then x is equal to

If cos(sin^(-1)'2/5 + cos^(-1)x) = 0 , then x is equal to

lim_(x rarr0)(cos^(-1)(cos x))/(sin^(-1)(sin x)) is equal to :

ML KHANNA-INVERSE CIRCULAR FUNCTIONS -Self Assessment Test
  1. If cos^(-1) x-sin^(-1)x=0, then x is equal to

    Text Solution

    |

  2. If cos^(-1)" 1/x=theta , " then " tan theta=

    Text Solution

    |

  3. If A tan^(-1) x ,x in R then the value of sin 2A is

    Text Solution

    |

  4. Write the value of sin(cot^(-1)x) .

    Text Solution

    |

  5. The value of cos^(-1){(sqrt(1-sinx)+sqrt(1+sinx))/(sqrt(1-sinx -sqr...

    Text Solution

    |

  6. The value of sin^(-1) x+cos^(-1)x(absx le 1) is

    Text Solution

    |

  7. If sin(sin^(-1)1/5+cos^(-1)x) =1 then x is equal to

    Text Solution

    |

  8. The value of cos^(-1)(-1)-sin^(-1)(1) is- pi b. pi/2 c. (3pi)/2 d. -(3...

    Text Solution

    |

  9. If sin^(-1) sqrt(x^2+2x+1sec^(-1)) sqrt(x^2+2x+1) = pi/2, x ne 0 then ...

    Text Solution

    |

  10. tan^(-1) ""1/3+tan^(-1)""2/9+tan^(-1)"" 4/33 +….oo is equal to

    Text Solution

    |

  11. Find the set of values of parameter a so that the equation (sin^(-1)x)...

    Text Solution

    |

  12. If sin(sin^(-1)1/5+cos^(-1)x) =1 then x is equal to

    Text Solution

    |

  13. The value of cot[cos^(-1)(7/25)] is

    Text Solution

    |

  14. If x takes negative permissible vlaue then sin^(-1)x=

    Text Solution

    |

  15. cot^(-1)9 + cos^(-1)sqrt(41)/4=

    Text Solution

    |

  16. The principal value of "sin"^(-1)("sin""(5pi)/(3)) is

    Text Solution

    |

  17. The solution set of the equation sin^(-1)x=2 tan^(-1)x is

    Text Solution

    |

  18. If sin^(-1)x+sin^(-1)y+sin^(-1)z=(pi)/(2), then the value of x^(2)+y^(...

    Text Solution

    |

  19. cos(tan^(-1)((1)/(3))+tan^(-1)((1)/(2)))=

    Text Solution

    |

  20. sin^(-1)" 1/sqrt5 +cot^(-1)3 is equal to

    Text Solution

    |

  21. If sin^(-1)((2a)/(1+a^2))+sin^(-1)((2b)/(1+b^2))=2tan^(-1)x , then x i...

    Text Solution

    |