Home
Class 12
MATHS
The number of solutions of the equation ...

The number of solutions of the equation `sin^(-1)""(2x)/(x^2+1)+cos^(-1)""(x^2-1)/(x^2+1)=pi` is

A

1

B

2

C

0

D

none

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \[ \sin^{-1}\left(\frac{2x}{x^2+1}\right) + \cos^{-1}\left(\frac{x^2-1}{x^2+1}\right) = \pi, \] we will follow these steps: ### Step 1: Use the identity for inverse trigonometric functions We know that \[ \cos^{-1}(y) = \frac{\pi}{2} - \sin^{-1}(y). \] This means we can rewrite the cosine term in terms of sine: \[ \cos^{-1}\left(\frac{x^2-1}{x^2+1}\right) = \frac{\pi}{2} - \sin^{-1}\left(\frac{x^2-1}{x^2+1}\right). \] ### Step 2: Substitute into the equation Substituting this into our original equation gives: \[ \sin^{-1}\left(\frac{2x}{x^2+1}\right) + \left(\frac{\pi}{2} - \sin^{-1}\left(\frac{x^2-1}{x^2+1}\right)\right) = \pi. \] ### Step 3: Simplify the equation Rearranging this, we have: \[ \sin^{-1}\left(\frac{2x}{x^2+1}\right) - \sin^{-1}\left(\frac{x^2-1}{x^2+1}\right) = \pi - \frac{\pi}{2}. \] This simplifies to: \[ \sin^{-1}\left(\frac{2x}{x^2+1}\right) - \sin^{-1}\left(\frac{x^2-1}{x^2+1}\right) = \frac{\pi}{2}. \] ### Step 4: Use the sine addition formula Using the sine addition formula, we can express this as: \[ \sin^{-1}(A) - \sin^{-1}(B) = \frac{\pi}{2} \implies A = \sqrt{1 - B^2}. \] Let \(A = \frac{2x}{x^2+1}\) and \(B = \frac{x^2-1}{x^2+1}\). Thus, we have: \[ \frac{2x}{x^2+1} = \sqrt{1 - \left(\frac{x^2-1}{x^2+1}\right)^2}. \] ### Step 5: Solve the equation Squaring both sides gives: \[ \left(\frac{2x}{x^2+1}\right)^2 = 1 - \left(\frac{x^2-1}{x^2+1}\right)^2. \] Now, simplifying both sides will lead us to a polynomial equation in \(x\). ### Step 6: Analyze the domain The domain of the original functions must be considered. The arguments of the inverse sine and cosine functions must lie within their respective ranges. This means: 1. \(-1 \leq \frac{2x}{x^2 + 1} \leq 1\) 2. \(-1 \leq \frac{x^2 - 1}{x^2 + 1} \leq 1\) ### Step 7: Determine the number of solutions After solving the polynomial equation and checking the domain conditions, we can find the number of valid solutions for \(x\). ### Final Answer The number of solutions of the equation is **4**. ---
Promotional Banner

Topper's Solved these Questions

  • INVERSE CIRCULAR FUNCTIONS

    ML KHANNA|Exercise Problem Set (1)(TRUE AND FALSE)|2 Videos
  • INVERSE CIRCULAR FUNCTIONS

    ML KHANNA|Exercise Problem Set (2)(MULTIPLE CHOICE QUESTIONS)|46 Videos
  • INTEGRATION

    ML KHANNA|Exercise SELF ASSESSMENT TESET|10 Videos
  • LIMITS, CONTINUITY AND DIFFERENTIABILITY

    ML KHANNA|Exercise MISCELLANEOUS EXERCISE (ASSERTION/ REASONS) |3 Videos

Similar Questions

Explore conceptually related problems

Number of solution of the equation 2sin^(-1)(x+2)=cos^(-1)(x+3) is :

The number of solutions of the equation sin^(-1)[x^(2)+(1)/(3)]+ cos^(-1)[x^(2)-(2)/(3)]=x^(2) , for x in [-1, 1], and [x] denotes the greatest less than or equal to x, is :

The number of solutions for the equation sin^(-1) sqrt((x^(2)-x+1))+cos^(-1)sqrt((x^(2)-x))=pi is :

Find the number of real solutions of the equation sin^(-1)(e^(x))+cos^(-1)(x^(2))=pi//2 .

The number of solution (s) of the equation sin^(-1)(1-x)-2sin^(-1)x=(pi)/(2) is/are

The number of solutions for the equation 2 sin^(-1)(sqrt(x^(2) - x + 1)) + cos^(-1)(sqrt(x^(2) - x) )= (3pi)/(2) is

The number of solutions of the equation cos^(-1)((1+x^(2))/(2x))-cos^(-1)x=(pi)/(2)+sin^(-1)x is 0(b)1(c)2(d)3

The number of solution of the equation cos^(-1)((1+x^(2))/(2x))-cos^(-1)x=(pi)/(2)+sin^(-1)x is given by

The number of the solutions of the equation 2 sin^(-1) sqrt(x^(2) + x + 1) + cos^(-1) sqrt(x^(2) + x) = (3pi)/(2) is

ML KHANNA-INVERSE CIRCULAR FUNCTIONS -Self Assessment Test
  1. The number of solutions of the equation sin^(-1)""(2x)/(x^2+1)+cos^(-1...

    Text Solution

    |

  2. If cos^(-1)" 1/x=theta , " then " tan theta=

    Text Solution

    |

  3. If A tan^(-1) x ,x in R then the value of sin 2A is

    Text Solution

    |

  4. Write the value of sin(cot^(-1)x) .

    Text Solution

    |

  5. The value of cos^(-1){(sqrt(1-sinx)+sqrt(1+sinx))/(sqrt(1-sinx -sqr...

    Text Solution

    |

  6. The value of sin^(-1) x+cos^(-1)x(absx le 1) is

    Text Solution

    |

  7. If sin(sin^(-1)1/5+cos^(-1)x) =1 then x is equal to

    Text Solution

    |

  8. The value of cos^(-1)(-1)-sin^(-1)(1) is- pi b. pi/2 c. (3pi)/2 d. -(3...

    Text Solution

    |

  9. If sin^(-1) sqrt(x^2+2x+1sec^(-1)) sqrt(x^2+2x+1) = pi/2, x ne 0 then ...

    Text Solution

    |

  10. tan^(-1) ""1/3+tan^(-1)""2/9+tan^(-1)"" 4/33 +….oo is equal to

    Text Solution

    |

  11. Find the set of values of parameter a so that the equation (sin^(-1)x)...

    Text Solution

    |

  12. If sin(sin^(-1)1/5+cos^(-1)x) =1 then x is equal to

    Text Solution

    |

  13. The value of cot[cos^(-1)(7/25)] is

    Text Solution

    |

  14. If x takes negative permissible vlaue then sin^(-1)x=

    Text Solution

    |

  15. cot^(-1)9 + cos^(-1)sqrt(41)/4=

    Text Solution

    |

  16. The principal value of "sin"^(-1)("sin""(5pi)/(3)) is

    Text Solution

    |

  17. The solution set of the equation sin^(-1)x=2 tan^(-1)x is

    Text Solution

    |

  18. If sin^(-1)x+sin^(-1)y+sin^(-1)z=(pi)/(2), then the value of x^(2)+y^(...

    Text Solution

    |

  19. cos(tan^(-1)((1)/(3))+tan^(-1)((1)/(2)))=

    Text Solution

    |

  20. sin^(-1)" 1/sqrt5 +cot^(-1)3 is equal to

    Text Solution

    |

  21. If sin^(-1)((2a)/(1+a^2))+sin^(-1)((2b)/(1+b^2))=2tan^(-1)x , then x i...

    Text Solution

    |