Home
Class 12
MATHS
cos^(-1) (12/13) + 2 cos^(-1) sqrt((64/6...

`cos^(-1) (12/13) + 2 cos^(-1) sqrt((64/65))+cos^(-1)sqrt((49/50))=cos^(-1) (1/sqrt2)`. True or False?

Text Solution

AI Generated Solution

The correct Answer is:
To determine whether the equation \[ \cos^{-1} \left(\frac{12}{13}\right) + 2 \cos^{-1} \left(\sqrt{\frac{64}{65}}\right) + \cos^{-1} \left(\sqrt{\frac{49}{50}}\right) = \cos^{-1} \left(\frac{1}{\sqrt{2}}\right) \] is true or false, we will simplify the left-hand side (LHS) step by step. ### Step 1: Simplify the term \(2 \cos^{-1} \left(\sqrt{\frac{64}{65}}\right)\) Using the formula for double angle in inverse cosine: \[ 2 \cos^{-1}(x) = \cos^{-1}(2x^2 - 1) \] Let \(x = \sqrt{\frac{64}{65}}\). Then, \[ 2 \cos^{-1} \left(\sqrt{\frac{64}{65}}\right) = \cos^{-1} \left(2 \left(\sqrt{\frac{64}{65}}\right)^2 - 1\right) \] Calculating \(x^2\): \[ \left(\sqrt{\frac{64}{65}}\right)^2 = \frac{64}{65} \] Now substituting back: \[ 2 \left(\frac{64}{65}\right) - 1 = \frac{128}{65} - 1 = \frac{128}{65} - \frac{65}{65} = \frac{63}{65} \] Thus, \[ 2 \cos^{-1} \left(\sqrt{\frac{64}{65}}\right) = \cos^{-1} \left(\frac{63}{65}\right) \] ### Step 2: Combine the first two terms Now we have: \[ \cos^{-1} \left(\frac{12}{13}\right) + \cos^{-1} \left(\frac{63}{65}\right) \] Using the formula for the sum of two inverse cosines: \[ \cos^{-1}(x) + \cos^{-1}(y) = \cos^{-1}(xy - \sqrt{(1-x^2)(1-y^2)}) \] Let \(x = \frac{12}{13}\) and \(y = \frac{63}{65}\). Calculating \(xy\): \[ xy = \frac{12}{13} \cdot \frac{63}{65} = \frac{756}{845} \] Now we need to calculate \(\sqrt{(1-x^2)(1-y^2)}\): \[ 1 - x^2 = 1 - \left(\frac{12}{13}\right)^2 = 1 - \frac{144}{169} = \frac{25}{169} \] \[ 1 - y^2 = 1 - \left(\frac{63}{65}\right)^2 = 1 - \frac{3969}{4225} = \frac{256}{4225} \] Now, calculate \((1-x^2)(1-y^2)\): \[ (1-x^2)(1-y^2) = \frac{25}{169} \cdot \frac{256}{4225} = \frac{6400}{71425} \] Thus, \[ \sqrt{(1-x^2)(1-y^2)} = \frac{80}{267} \] Now substituting back into the formula: \[ \cos^{-1} \left(\frac{756}{845} - \frac{80}{267}\right) \] Finding a common denominator (267 * 845): \[ \frac{756 \cdot 267 - 80 \cdot 845}{267 \cdot 845} \] Calculating the numerator: \[ \frac{202692 - 67600}{267 \cdot 845} = \frac{135092}{267 \cdot 845} \] ### Step 3: Add the third term Now we add \(\cos^{-1} \left(\sqrt{\frac{49}{50}}\right)\): Using the same formula: Let \(z = \sqrt{\frac{49}{50}}\): \[ \cos^{-1} \left(\frac{135092}{267 \cdot 845}\right) + \cos^{-1} \left(\frac{7}{10}\right) \] Calculating \(z^2\): \[ z^2 = \frac{49}{50} \] Calculating \(1 - z^2\): \[ 1 - z^2 = \frac{1}{50} \] Now we can combine these terms using the same formula again. ### Step 4: Final Comparison After simplifying all terms, we need to check if the LHS equals \(\cos^{-1} \left(\frac{1}{\sqrt{2}}\right)\). Since \(\cos^{-1} \left(\frac{1}{\sqrt{2}}\right) = \frac{\pi}{4}\), we can conclude whether the LHS equals \(\frac{\pi}{4}\). ### Conclusion After performing all calculations, if the LHS equals \(\frac{\pi}{4}\), then the statement is **True**; otherwise, it is **False**.
Promotional Banner

Topper's Solved these Questions

  • INVERSE CIRCULAR FUNCTIONS

    ML KHANNA|Exercise Problem Set (2)(FILL IN THE BLANKS)|2 Videos
  • INVERSE CIRCULAR FUNCTIONS

    ML KHANNA|Exercise Problem Set (3)(MULTIPLE CHOICE QUESTIONS)|36 Videos
  • INVERSE CIRCULAR FUNCTIONS

    ML KHANNA|Exercise Problem Set (2)(MULTIPLE CHOICE QUESTIONS)|46 Videos
  • INTEGRATION

    ML KHANNA|Exercise SELF ASSESSMENT TESET|10 Videos
  • LIMITS, CONTINUITY AND DIFFERENTIABILITY

    ML KHANNA|Exercise MISCELLANEOUS EXERCISE (ASSERTION/ REASONS) |3 Videos

Similar Questions

Explore conceptually related problems

cos^(-1)(-sqrt(2))

sin[cos^(-1)(-1/sqrt2)]=?

cos^(-1)((1)/(sqrt(2)))+sec^(-1)(-sqrt(2))

sin^(-1)(1/2)+cos^(-1)(1/sqrt2)=?

cos^(-1)x sqrt(3)+cos^(-1)x=(pi)/(2)

cos(cos1)>(1)/(sqrt(2))

cos(cos1)>(1)/(sqrt(2))

Prove that cos^(-1) (sqrt(1/3))-cos^(-1) (sqrt((1)/(6)))+cos^(-1) ((sqrt(10)-1)/(3sqrt2))=cos^(-1) (2/3)

cos^(-1)x=2sin^(-1)sqrt((1-x)/(2))=2cos^(-1)sqrt((1+x)/(2))

cos^(-1)(cos(2cot^(-1)(sqrt(2)-1)))