Home
Class 12
MATHS
The value of sin^(-1) x+cos^(-1)x(absx l...

The value of `sin^(-1) x+cos^(-1)x(absx le 1)` is

A

1

B

`pi`

C

`pi//2`

D

`-pi//2`

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of \( \sin^{-1} x + \cos^{-1} x \) given that \( |x| \leq 1 \), we can follow these steps: ### Step-by-Step Solution: 1. **Define Variables**: Let \( \alpha = \sin^{-1} x \) and \( \beta = \cos^{-1} x \). 2. **Express x in terms of α and β**: From the definitions, we have: \[ x = \sin \alpha \quad \text{(1)} \] \[ x = \cos \beta \quad \text{(2)} \] 3. **Set the Equations Equal**: Since both equations (1) and (2) equal \( x \), we can set them equal to each other: \[ \sin \alpha = \cos \beta \] 4. **Use the Co-function Identity**: We know from trigonometric identities that: \[ \cos \beta = \sin\left(\frac{\pi}{2} - \beta\right) \] Therefore, we can rewrite the equation as: \[ \sin \alpha = \sin\left(\frac{\pi}{2} - \beta\right) \] 5. **Equate Angles**: Since the sine function is equal, we can equate the angles: \[ \alpha = \frac{\pi}{2} - \beta \] 6. **Add α and β**: Now, adding \( \alpha \) and \( \beta \): \[ \alpha + \beta = \frac{\pi}{2} \] 7. **Substitute Back**: Recall that \( \alpha = \sin^{-1} x \) and \( \beta = \cos^{-1} x \): \[ \sin^{-1} x + \cos^{-1} x = \frac{\pi}{2} \] ### Final Result: Thus, the value of \( \sin^{-1} x + \cos^{-1} x \) is: \[ \boxed{\frac{\pi}{2}} \]
Promotional Banner

Topper's Solved these Questions

  • INVERSE CIRCULAR FUNCTIONS

    ML KHANNA|Exercise Problem Set (4)(FILL IN THE BLANKS)|1 Videos
  • INTEGRATION

    ML KHANNA|Exercise SELF ASSESSMENT TESET|10 Videos
  • LIMITS, CONTINUITY AND DIFFERENTIABILITY

    ML KHANNA|Exercise MISCELLANEOUS EXERCISE (ASSERTION/ REASONS) |3 Videos

Similar Questions

Explore conceptually related problems

solve sin^(-1) x le cos^(-1) x

The value of cos(sin^(-1)x + cos^(-1)x) , where |x| le 1 , is

Find the value of : sin (sin^(-1) x + cos^(-1) x)

cos^(-1)(-x),absx le 1 , is equal to

Find the value of sin^(-1)(cos(sin^(-1)x))+cos^(-1)(sin(cos^(-1)x))

The value of tan(sin^(-1)(cos(sin^(-1)x)))tan(cos^(-1)(sin(cos^(-1)x))), where x in(0,1) is equal to 0(b)1(c)-1(d) none of these

Find the value of x for which sin^(-1) (cos^(-1) x) lt 1 and cos^(-1) (cos^(-1) x) lt 1

ML KHANNA-INVERSE CIRCULAR FUNCTIONS -Self Assessment Test
  1. Write the value of sin(cot^(-1)x) .

    Text Solution

    |

  2. The value of cos^(-1){(sqrt(1-sinx)+sqrt(1+sinx))/(sqrt(1-sinx -sqr...

    Text Solution

    |

  3. The value of sin^(-1) x+cos^(-1)x(absx le 1) is

    Text Solution

    |

  4. If sin(sin^(-1)1/5+cos^(-1)x) =1 then x is equal to

    Text Solution

    |

  5. The value of cos^(-1)(-1)-sin^(-1)(1) is- pi b. pi/2 c. (3pi)/2 d. -(3...

    Text Solution

    |

  6. If sin^(-1) sqrt(x^2+2x+1sec^(-1)) sqrt(x^2+2x+1) = pi/2, x ne 0 then ...

    Text Solution

    |

  7. tan^(-1) ""1/3+tan^(-1)""2/9+tan^(-1)"" 4/33 +….oo is equal to

    Text Solution

    |

  8. Find the set of values of parameter a so that the equation (sin^(-1)x)...

    Text Solution

    |

  9. If sin(sin^(-1)1/5+cos^(-1)x) =1 then x is equal to

    Text Solution

    |

  10. The value of cot[cos^(-1)(7/25)] is

    Text Solution

    |

  11. If x takes negative permissible vlaue then sin^(-1)x=

    Text Solution

    |

  12. cot^(-1)9 + cos^(-1)sqrt(41)/4=

    Text Solution

    |

  13. The principal value of "sin"^(-1)("sin""(5pi)/(3)) is

    Text Solution

    |

  14. The solution set of the equation sin^(-1)x=2 tan^(-1)x is

    Text Solution

    |

  15. If sin^(-1)x+sin^(-1)y+sin^(-1)z=(pi)/(2), then the value of x^(2)+y^(...

    Text Solution

    |

  16. cos(tan^(-1)((1)/(3))+tan^(-1)((1)/(2)))=

    Text Solution

    |

  17. sin^(-1)" 1/sqrt5 +cot^(-1)3 is equal to

    Text Solution

    |

  18. If sin^(-1)((2a)/(1+a^2))+sin^(-1)((2b)/(1+b^2))=2tan^(-1)x , then x i...

    Text Solution

    |

  19. If sin^(-1) x + sin^(-1) y = (2pi)/3", then " cos^(-1) x + cos^(-1) y

    Text Solution

    |

  20. tan^(-1)"" 1/2+tan^(-1)"" 1/3=

    Text Solution

    |