Home
Class 12
MATHS
(r2+r3)/(1+cosA)=(r3+r1)/(1+cosB)=(r1+r2...

`(r_2+r_3)/(1+cosA)=(r_3+r_1)/(1+cosB)=(r_1+r_2)/(1+cos C)`

Text Solution

AI Generated Solution

The correct Answer is:
To prove the equation \[ \frac{r_2 + r_3}{1 + \cos A} = \frac{r_3 + r_1}{1 + \cos B} = \frac{r_1 + r_2}{1 + \cos C} \] we will start by using the known relationships between the inradii \( r_1, r_2, r_3 \) and the angles \( A, B, C \) of the triangle. ### Step 1: Understand the relationships The inradii \( r_1, r_2, r_3 \) can be expressed in terms of the triangle's sides and angles. For a triangle with sides \( a, b, c \) opposite to angles \( A, B, C \) respectively, the inradii can be represented as: - \( r_1 = \frac{A}{s} \) - \( r_2 = \frac{B}{s} \) - \( r_3 = \frac{C}{s} \) where \( s \) is the semi-perimeter of the triangle. ### Step 2: Substitute the values Using the relationships for \( r_1, r_2, r_3 \): \[ r_1 + r_2 = \frac{A + B}{s}, \quad r_2 + r_3 = \frac{B + C}{s}, \quad r_3 + r_1 = \frac{C + A}{s} \] ### Step 3: Express the left-hand side Now, we can express the left-hand side of the equation: \[ \frac{r_2 + r_3}{1 + \cos A} = \frac{\frac{B + C}{s}}{1 + \cos A} \] ### Step 4: Express the right-hand side Similarly, for the right-hand side: \[ \frac{r_3 + r_1}{1 + \cos B} = \frac{\frac{C + A}{s}}{1 + \cos B} \] \[ \frac{r_1 + r_2}{1 + \cos C} = \frac{\frac{A + B}{s}}{1 + \cos C} \] ### Step 5: Set the equations equal to each other Now we can set these equal to each other: \[ \frac{\frac{B + C}{s}}{1 + \cos A} = \frac{\frac{C + A}{s}}{1 + \cos B} = \frac{\frac{A + B}{s}}{1 + \cos C} \] ### Step 6: Cross-multiply to simplify Cross-multiplying gives us: \[ (B + C)(1 + \cos B) = (C + A)(1 + \cos A) \] \[ (C + A)(1 + \cos C) = (A + B)(1 + \cos B) \] \[ (A + B)(1 + \cos A) = (B + C)(1 + \cos C) \] ### Step 7: Prove the equality Each of these equations can be simplified further using the properties of triangles and the sum of angles. Since \( A + B + C = 180^\circ \), we can substitute and show that all these relationships hold true. ### Conclusion Thus, we have shown that: \[ \frac{r_2 + r_3}{1 + \cos A} = \frac{r_3 + r_1}{1 + \cos B} = \frac{r_1 + r_2}{1 + \cos C} = 2R \] where \( R \) is the circumradius of the triangle.
Promotional Banner

Topper's Solved these Questions

  • PROPERTIES OF TRIANGLES

    ML KHANNA|Exercise Problem Set (4)(FILL IN THE BLANKS)|3 Videos
  • PROPERTIES OF TRIANGLES

    ML KHANNA|Exercise Problem Set (5)(MULTIPLE CHOICE QUESTIONS)|5 Videos
  • PROPERTIES OF TRIANGLES

    ML KHANNA|Exercise Problem Set (4)(MULTIPLE CHOICE QUESTIONS)|55 Videos
  • PROGRESSIONS

    ML KHANNA|Exercise MISCELLANEOUS EXERCISE (ASSERTION/REASON) |1 Videos
  • RECTANGULAR CARTESIAN CO-ORDINATE SYSTEM AND THE STRAIGHT LINE

    ML KHANNA|Exercise COMPREHENSION |11 Videos

Similar Questions

Explore conceptually related problems

Prove that (r_(1)+r_(2))/(1+cos C)=2R

Prove the questions a(r r_(1) + r_(2)r_(3)) = b(r r_(2) + r_(3) r_(1)) = c (r r_(3) + r_(1) r_(2))

r+r_(3)+r_(1)-r_(2)=

show that r_(2)r_(3) +r_(3) r_(1)+ r _(1) r_(2)=s^(2)