Home
Class 12
MATHS
If y= sin^(n) x cos nx then (d...

If ` y= sin^(n) x cos nx ` then ` (dy)/(dx)` =

A

` n sin^(n-1) x cos (n +1) x`

B

` n sin^(n-1) x sin (n+1)x `

C

`n sin^(n-1) x cos ( n-1) x `

D

` n sin ^(n-1) x cos nx `

Text Solution

AI Generated Solution

The correct Answer is:
To find the derivative of \( y = \sin^n x \cdot \cos(nx) \), we will use the product rule of differentiation. The product rule states that if you have two functions \( u \) and \( v \), then the derivative \( \frac{dy}{dx} \) is given by: \[ \frac{dy}{dx} = u \frac{dv}{dx} + v \frac{du}{dx} \] ### Step-by-Step Solution: 1. **Identify the functions**: Let \( u = \sin^n x \) and \( v = \cos(nx) \). 2. **Differentiate \( u \)**: To differentiate \( u = \sin^n x \), we apply the chain rule: \[ \frac{du}{dx} = n \sin^{n-1} x \cdot \frac{d}{dx}(\sin x) = n \sin^{n-1} x \cdot \cos x \] 3. **Differentiate \( v \)**: To differentiate \( v = \cos(nx) \), we again apply the chain rule: \[ \frac{dv}{dx} = -\sin(nx) \cdot \frac{d}{dx}(nx) = -n \sin(nx) \] 4. **Apply the product rule**: Now, substituting \( u \), \( v \), \( \frac{du}{dx} \), and \( \frac{dv}{dx} \) into the product rule: \[ \frac{dy}{dx} = u \frac{dv}{dx} + v \frac{du}{dx} \] \[ \frac{dy}{dx} = \sin^n x \cdot (-n \sin(nx)) + \cos(nx) \cdot (n \sin^{n-1} x \cdot \cos x) \] 5. **Simplify the expression**: \[ \frac{dy}{dx} = -n \sin^n x \sin(nx) + n \sin^{n-1} x \cos(nx) \cos x \] 6. **Factor out common terms**: \[ \frac{dy}{dx} = n \sin^{n-1} x \left( \cos(nx) \cos x - \sin^n x \sin(nx) \right) \] 7. **Use the product-to-sum identities**: The expression \( \cos(nx) \cos x - \sin(nx) \sin x \) can be simplified using the cosine addition formula: \[ \cos(nx + x) = \cos((n+1)x) \] Therefore, we have: \[ \frac{dy}{dx} = n \sin^{n-1} x \cos((n+1)x) \] ### Final Answer: \[ \frac{dy}{dx} = n \sin^{n-1} x \cos((n+1)x) \]
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    ML KHANNA|Exercise MESCELLANEOUS EXERCISE|3 Videos
  • DIFFERENTIATION

    ML KHANNA|Exercise PROBLEM SET-(3)|24 Videos
  • DIFFERENTIAL EQUATIONS

    ML KHANNA|Exercise MISCELLANEOUS EXERCISE (Matching Entries) |2 Videos
  • EXAMINATION PAPER -2013

    ML KHANNA|Exercise PAPER -II SECTION-3 (MATCHING LIST TYPE)|4 Videos

Similar Questions

Explore conceptually related problems

If y = sin x^(@) " and " u = cos x " then " (dy)/(dx) is equal to

If y=sin x+cos x then (dy)/(dx) =

If y = sin (x + a ) / cos x then find (dy)/(dx)

If y=cos (sin x ),then (dy)/(dx) =

If y =(cos x -sin x )/( cos x + si nx ) ,the n(dy)/(dx) =

If y= (sinx -cos x )^((sin x +cos x ) ),then (dy)/(dx)=

If y=log (sin x +cos x ) ,then (dy)/(dx)

y=x^(sinx)+(sin x)^(cos x), then find (dy)/(dx)

If y+cos y=sin x then find (dy)/(dx)