Home
Class 12
MATHS
If y=x^(e^x) , then (dy)/(dx)=...

If `y=x^(e^x) `, then ` (dy)/(dx)`=

A

`y(log x+ e^x)`

B

`y log x (1/2 +e^x)`

C

`ye^x (log x +x)`

D

`ye^x (log x +(1)/(x))`

Text Solution

AI Generated Solution

The correct Answer is:
To find the derivative of the function \( y = x^{e^x} \), we can use logarithmic differentiation. Here’s a step-by-step solution: ### Step 1: Take the natural logarithm of both sides We start by taking the natural logarithm of both sides of the equation: \[ \ln y = \ln(x^{e^x}) \] ### Step 2: Simplify using logarithmic properties Using the property of logarithms that states \( \ln(a^b) = b \ln a \), we can simplify the right-hand side: \[ \ln y = e^x \ln x \] ### Step 3: Differentiate both sides Now we differentiate both sides with respect to \( x \). For the left-hand side, we use the chain rule: \[ \frac{1}{y} \frac{dy}{dx} = \frac{d}{dx}(e^x \ln x) \] ### Step 4: Apply the product rule on the right-hand side To differentiate \( e^x \ln x \), we apply the product rule: \[ \frac{d}{dx}(e^x \ln x) = e^x \cdot \frac{d}{dx}(\ln x) + \ln x \cdot \frac{d}{dx}(e^x) \] Calculating the derivatives, we have: \[ \frac{d}{dx}(\ln x) = \frac{1}{x} \quad \text{and} \quad \frac{d}{dx}(e^x) = e^x \] Thus, substituting these derivatives back in gives: \[ \frac{d}{dx}(e^x \ln x) = e^x \cdot \frac{1}{x} + \ln x \cdot e^x \] This simplifies to: \[ \frac{d}{dx}(e^x \ln x) = \frac{e^x}{x} + e^x \ln x \] ### Step 5: Substitute back into the equation Now we can substitute this back into our differentiation equation: \[ \frac{1}{y} \frac{dy}{dx} = \frac{e^x}{x} + e^x \ln x \] ### Step 6: Solve for \( \frac{dy}{dx} \) To isolate \( \frac{dy}{dx} \), we multiply both sides by \( y \): \[ \frac{dy}{dx} = y \left( \frac{e^x}{x} + e^x \ln x \right) \] ### Step 7: Substitute back for \( y \) Since we know \( y = x^{e^x} \), we substitute back: \[ \frac{dy}{dx} = x^{e^x} \left( \frac{e^x}{x} + e^x \ln x \right) \] ### Step 8: Factor out \( e^x \) Factoring \( e^x \) out gives: \[ \frac{dy}{dx} = x^{e^x} e^x \left( \frac{1}{x} + \ln x \right) \] ### Final Result Thus, the derivative \( \frac{dy}{dx} \) is: \[ \frac{dy}{dx} = e^x x^{e^x} \left( \frac{1}{x} + \ln x \right) \] ---
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    ML KHANNA|Exercise MESCELLANEOUS EXERCISE|3 Videos
  • DIFFERENTIATION

    ML KHANNA|Exercise PROBLEM SET-(3)|24 Videos
  • DIFFERENTIAL EQUATIONS

    ML KHANNA|Exercise MISCELLANEOUS EXERCISE (Matching Entries) |2 Videos
  • EXAMINATION PAPER -2013

    ML KHANNA|Exercise PAPER -II SECTION-3 (MATCHING LIST TYPE)|4 Videos

Similar Questions

Explore conceptually related problems

If y=e^(x^(x)), then (dy)/(dx) is

If x^(y)=e^(x-y) , then (dy)/(dx) is equal to

If y=x^(e-x^(2)) then (dy)/(dx) is

If y= cos (x^(2) e^(x) ),then (dy)/(dx) =

If y=e^(x)+e^(-x)," then: "(dy)/(dx)=

If y=e^(x)+e^(-x)," then: "(dy)/(dx)=

if y^(x)=e^(y-x) then (dy)/(dx)

"If "x^(y)=e^(x-y)" then "(dy)/(dx)=

If x^(2y)=e^(x-y)," then "(dy)/(dx)=

If x^(y)=e^(x-y), then (dy)/(dx) is (1+x)/(1+log x)(b)(1-log x)/(1+log x)(c) not defined (d) (log x)/((1+log x)^(2))