Home
Class 12
MATHS
(d)/(dx)tan^(-1) """"(secx + tan x)=...

`(d)/(dx)tan^(-1) """"(secx + tan x)`=

A

1

B

`1//2`

C

2

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To differentiate the function \( y = \tan^{-1}(\sec x + \tan x) \), we will apply the chain rule of differentiation. Here’s the step-by-step solution: ### Step 1: Identify the outer and inner functions The outer function is \( \tan^{-1}(u) \) where \( u = \sec x + \tan x \). ### Step 2: Differentiate the outer function Using the derivative of \( \tan^{-1}(u) \): \[ \frac{d}{dx}(\tan^{-1}(u)) = \frac{1}{1 + u^2} \cdot \frac{du}{dx} \] So, we need to find \( \frac{du}{dx} \). ### Step 3: Differentiate the inner function \( u = \sec x + \tan x \) Now we differentiate \( u \): \[ \frac{du}{dx} = \frac{d}{dx}(\sec x) + \frac{d}{dx}(\tan x) \] From trigonometric derivatives, we know: \[ \frac{d}{dx}(\sec x) = \sec x \tan x \quad \text{and} \quad \frac{d}{dx}(\tan x) = \sec^2 x \] Thus, \[ \frac{du}{dx} = \sec x \tan x + \sec^2 x \] ### Step 4: Substitute back into the derivative of the outer function Now we substitute \( u \) and \( \frac{du}{dx} \) back into the derivative: \[ \frac{dy}{dx} = \frac{1}{1 + (\sec x + \tan x)^2} \cdot (\sec x \tan x + \sec^2 x) \] ### Step 5: Simplify the denominator We need to simplify \( 1 + (\sec x + \tan x)^2 \): \[ (\sec x + \tan x)^2 = \sec^2 x + 2\sec x \tan x + \tan^2 x \] Using the identity \( 1 + \tan^2 x = \sec^2 x \): \[ 1 + (\sec x + \tan x)^2 = 1 + \sec^2 x + 2\sec x \tan x + \tan^2 x = 1 + \sec^2 x + \tan^2 x + 2\sec x \tan x = 1 + 1 + 2\sec x \tan x = 2 + 2\sec x \tan x \] ### Step 6: Final expression for the derivative Now substituting back into the derivative: \[ \frac{dy}{dx} = \frac{\sec x \tan x + \sec^2 x}{2 + 2\sec x \tan x} \] Factoring out the 2 in the denominator: \[ \frac{dy}{dx} = \frac{\sec x \tan x + \sec^2 x}{2(1 + \sec x \tan x)} \] ### Step 7: Final simplification We can factor out \( \sec x \) from the numerator: \[ \frac{dy}{dx} = \frac{\sec x(\tan x + \sec x)}{2(1 + \sec x \tan x)} \] ### Conclusion Thus, the derivative of \( y = \tan^{-1}(\sec x + \tan x) \) is: \[ \frac{dy}{dx} = \frac{\sec x(\tan x + \sec x)}{2(1 + \sec x \tan x)} \]
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    ML KHANNA|Exercise MESCELLANEOUS EXERCISE|3 Videos
  • DIFFERENTIATION

    ML KHANNA|Exercise PROBLEM SET-(3)|24 Videos
  • DIFFERENTIAL EQUATIONS

    ML KHANNA|Exercise MISCELLANEOUS EXERCISE (Matching Entries) |2 Videos
  • EXAMINATION PAPER -2013

    ML KHANNA|Exercise PAPER -II SECTION-3 (MATCHING LIST TYPE)|4 Videos

Similar Questions

Explore conceptually related problems

(d)/(dx)(tan^(-1)(sec x+tan x))=...

(d)/(dx)[tan^(-1)[(secx-tanx)]=

(d)/(dx)[tan^(-1)(cosecx+cotx)]=

(d)/(dx)(tan^(-1)(birth x))

d/dx(tan^(-1)x) is :

d/(dx) [tan^(-1)(sqrt(x))] =

(d)/(dx)[sec(tan^(-1)x)]=

(d)/(dx)(log tan x)

At x=(pi)/(4),(d)/(dx)[tan^(-1)((cosx)/(1+sinx))]=