Home
Class 12
MATHS
if x = (1 -t^2)/( 1+t^2 ) and y= (2 ...

if ` x = (1 -t^2)/( 1+t^2 ) and y= (2 t)/( 1+t^2),` then ` (dy)/(dx)=`

A

`-(y)/(x)`

B

`(x)/(y)`

C

`-(x)/(y)`

D

`(y)/(x)`

Text Solution

AI Generated Solution

The correct Answer is:
To find \(\frac{dy}{dx}\) given the parametric equations \(x = \frac{1 - t^2}{1 + t^2}\) and \(y = \frac{2t}{1 + t^2}\), we will follow these steps: ### Step 1: Differentiate \(y\) with respect to \(t\) Using the quotient rule for differentiation, where \(y = \frac{u}{v}\) with \(u = 2t\) and \(v = 1 + t^2\): \[ \frac{dy}{dt} = \frac{v \frac{du}{dt} - u \frac{dv}{dt}}{v^2} \] Calculating \(\frac{du}{dt}\) and \(\frac{dv}{dt}\): - \(\frac{du}{dt} = 2\) - \(\frac{dv}{dt} = 2t\) Now substituting into the quotient rule: \[ \frac{dy}{dt} = \frac{(1 + t^2)(2) - (2t)(2t)}{(1 + t^2)^2} \] Simplifying the numerator: \[ = \frac{2 + 2t^2 - 4t^2}{(1 + t^2)^2} = \frac{2 - 2t^2}{(1 + t^2)^2} = \frac{2(1 - t^2)}{(1 + t^2)^2} \] ### Step 2: Differentiate \(x\) with respect to \(t\) Using the same quotient rule for \(x\): \[ x = \frac{1 - t^2}{1 + t^2} \] Here, \(u = 1 - t^2\) and \(v = 1 + t^2\): Calculating \(\frac{du}{dt}\) and \(\frac{dv}{dt}\): - \(\frac{du}{dt} = -2t\) - \(\frac{dv}{dt} = 2t\) Now substituting into the quotient rule: \[ \frac{dx}{dt} = \frac{(1 + t^2)(-2t) - (1 - t^2)(2t)}{(1 + t^2)^2} \] Simplifying the numerator: \[ = \frac{-2t - 2t^3 - 2t + 2t^3}{(1 + t^2)^2} = \frac{-4t}{(1 + t^2)^2} \] ### Step 3: Find \(\frac{dy}{dx}\) Now we can find \(\frac{dy}{dx}\) using the chain rule: \[ \frac{dy}{dx} = \frac{dy/dt}{dx/dt} \] Substituting the values we found: \[ \frac{dy}{dx} = \frac{\frac{2(1 - t^2)}{(1 + t^2)^2}}{\frac{-4t}{(1 + t^2)^2}} = \frac{2(1 - t^2)}{-4t} \] Simplifying: \[ \frac{dy}{dx} = \frac{1 - t^2}{-2t} = -\frac{1 - t^2}{2t} \] ### Final Answer \[ \frac{dy}{dx} = -\frac{1 - t^2}{2t} \] ---
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    ML KHANNA|Exercise MESCELLANEOUS EXERCISE|3 Videos
  • DIFFERENTIATION

    ML KHANNA|Exercise PROBLEM SET-(3)|24 Videos
  • DIFFERENTIAL EQUATIONS

    ML KHANNA|Exercise MISCELLANEOUS EXERCISE (Matching Entries) |2 Videos
  • EXAMINATION PAPER -2013

    ML KHANNA|Exercise PAPER -II SECTION-3 (MATCHING LIST TYPE)|4 Videos

Similar Questions

Explore conceptually related problems

If x=(1-t^2)/(1+t^2) and y=(2at)/(1+t^2) , then (dy)/(dx)=

If x=(1-t^2)/(1+t^2) and y=(2t)/(1+t^2) ,then (dy)/(dx)=

If x=(1-t^(2))/(1+t^(2))" and "y=(2t)/(1+t^(2))," then: "(dy)/(dx)|_(t=1) is

If x =a ((1-t^(2))/( 1+ t^(2))),y =(2bt )/(1+t^(2) ),then (dy)/(dx) =

If tany = (2t)/(1-t^2) and sin x = (2t)/(1+t^2) then (dy)/(dx) =_____

If x=tan ((1)/(2) sin ^(-1)((2t)/( 1+t^(2))) +(1)/(2)cos ^(-1) ((1-t^(2))/( 1+t^(2)))), then y= (2t)/( 1-t^(2)), then (dy)/(dx)=

If x=(1-t^(2))/(1+t^(2)) and y=(2t)/(1+t^(2)) , then (dy)/(dx) is equal to

If x=a((1+t^(2))/(1-t^(2))) and y=(2t)/(1-t^(2)), find (dy)/(dx)

If x=a((1+t^(2))/(1-t^(2))) and y=(2t)/(1-t^(2)), find (dy)/(dx)