Home
Class 12
MATHS
(d)/(dx)[ sin^2 cot^(-1) "" sqrt((1-x)/(...

`(d)/(dx)[ sin^2 cot^(-1) "" sqrt((1-x)/(1+x))]` equals

A

`-1/2`

B

`1/2`

C

`1`

D

`-1`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem \(\frac{d}{dx}\left[ \sin^2\left(\cot^{-1}\left(\sqrt{\frac{1-x}{1+x}}\right)\right)\right]\), we will use the chain rule and some trigonometric identities. Let's go through the solution step by step. ### Step 1: Rewrite the Function We start with the function: \[ y = \sin^2\left(\cot^{-1}\left(\sqrt{\frac{1-x}{1+x}}\right)\right) \] ### Step 2: Use the Identity for Sine Using the identity \(\sin^2(\theta) = \frac{1}{\csc^2(\theta)}\), we can rewrite the function as: \[ y = \frac{1}{\csc^2\left(\cot^{-1}\left(\sqrt{\frac{1-x}{1+x}}\right)\right)} \] ### Step 3: Apply the Cosecant Identity Recall that \(\csc^2(\theta) = 1 + \cot^2(\theta)\). Therefore, we have: \[ y = \frac{1}{1 + \cot^2\left(\cot^{-1}\left(\sqrt{\frac{1-x}{1+x}}\right)\right)} \] ### Step 4: Simplify Cotangent Since \(\cot(\cot^{-1}(x)) = x\), we can simplify: \[ y = \frac{1}{1 + \left(\sqrt{\frac{1-x}{1+x}}\right)^2} \] ### Step 5: Simplify the Expression Now, we simplify \(\left(\sqrt{\frac{1-x}{1+x}}\right)^2\): \[ y = \frac{1}{1 + \frac{1-x}{1+x}} = \frac{1}{\frac{(1+x) + (1-x)}{1+x}} = \frac{1+x}{2} \] ### Step 6: Differentiate Now we differentiate \(y\) with respect to \(x\): \[ \frac{dy}{dx} = \frac{d}{dx}\left(\frac{1+x}{2}\right) = \frac{1}{2} \] ### Final Answer Thus, the derivative is: \[ \frac{d}{dx}\left[ \sin^2\left(\cot^{-1}\left(\sqrt{\frac{1-x}{1+x}}\right)\right)\right] = \frac{1}{2} \]
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    ML KHANNA|Exercise MESCELLANEOUS EXERCISE|3 Videos
  • DIFFERENTIATION

    ML KHANNA|Exercise PROBLEM SET-(3)|24 Videos
  • DIFFERENTIAL EQUATIONS

    ML KHANNA|Exercise MISCELLANEOUS EXERCISE (Matching Entries) |2 Videos
  • EXAMINATION PAPER -2013

    ML KHANNA|Exercise PAPER -II SECTION-3 (MATCHING LIST TYPE)|4 Videos

Similar Questions

Explore conceptually related problems

(d)/(dx)[sin^(2)cot^(-1)sqrt((1-x)/(1+x))] is

(d)/(dx)[sin(2tan^(-1)sqrt((1+x)/(1-x)))]=

d//dx[sin^(2)cot^(-1)""(1)/(sqrt((1+x)/(1-x)))] , is equal to -

(d)/(dx)[sin^(-1)((sqrt(1+x)+sqrt(1-x))/(2))]=

(d)/(dx)[sin^(-1)sqrt(((1-x))/(2)]=

(d)/(dx)[sin^(-1)(x sqrt(1-x)-sqrt(x)sqrt(1-x^(2)))] is

(d)/(dx)[sin^(-1)x+sin^(-1)sqrt(1-x^(2))]=

d/(dx) (sin^(-1) "" (2x)/(1+x^(2))) is equal to