Home
Class 12
MATHS
If y= sec (tan^(-1) "" x ) then (dy)...

If ` y= sec (tan^(-1) "" x ) ` then ` (dy)/(dx)` at ` x=1` is equal to

A

`(1)/(sqrt(2))`

B

`1/2`

C

`sqrt(2)`

D

`1`

Text Solution

AI Generated Solution

The correct Answer is:
To find the derivative \(\frac{dy}{dx}\) of the function \(y = \sec(\tan^{-1}(x))\) at \(x = 1\), we will follow these steps: ### Step 1: Differentiate \(y\) using the chain rule We start with the function: \[ y = \sec(\tan^{-1}(x)) \] Using the chain rule, we differentiate \(y\) with respect to \(x\): \[ \frac{dy}{dx} = \frac{d}{dx}[\sec(u)] \cdot \frac{du}{dx} \] where \(u = \tan^{-1}(x)\). ### Step 2: Differentiate \(\sec(u)\) The derivative of \(\sec(u)\) is: \[ \frac{d}{du}[\sec(u)] = \sec(u) \tan(u) \] Thus, \[ \frac{dy}{dx} = \sec(\tan^{-1}(x)) \tan(\tan^{-1}(x)) \cdot \frac{du}{dx} \] ### Step 3: Differentiate \(u = \tan^{-1}(x)\) The derivative of \(\tan^{-1}(x)\) is: \[ \frac{du}{dx} = \frac{1}{1 + x^2} \] Substituting this back into our expression for \(\frac{dy}{dx}\): \[ \frac{dy}{dx} = \sec(\tan^{-1}(x)) \tan(\tan^{-1}(x)) \cdot \frac{1}{1 + x^2} \] ### Step 4: Simplify \(\tan(\tan^{-1}(x))\) Since \(\tan(\tan^{-1}(x)) = x\), we have: \[ \frac{dy}{dx} = \sec(\tan^{-1}(x)) \cdot x \cdot \frac{1}{1 + x^2} \] ### Step 5: Find \(\sec(\tan^{-1}(x))\) To find \(\sec(\tan^{-1}(x))\), we can use the identity: \[ \sec(\theta) = \frac{1}{\cos(\theta)} \] where \(\theta = \tan^{-1}(x)\). In a right triangle where the opposite side is \(x\) and the adjacent side is \(1\), the hypotenuse \(h\) is: \[ h = \sqrt{x^2 + 1} \] Thus, \[ \sec(\tan^{-1}(x)) = \frac{h}{1} = \sqrt{x^2 + 1} \] ### Step 6: Substitute back into \(\frac{dy}{dx}\) Now we can substitute \(\sec(\tan^{-1}(x))\) into our derivative: \[ \frac{dy}{dx} = \sqrt{x^2 + 1} \cdot x \cdot \frac{1}{1 + x^2} \] This simplifies to: \[ \frac{dy}{dx} = \frac{x \sqrt{x^2 + 1}}{1 + x^2} \] ### Step 7: Evaluate at \(x = 1\) Now we evaluate \(\frac{dy}{dx}\) at \(x = 1\): \[ \frac{dy}{dx} \bigg|_{x=1} = \frac{1 \cdot \sqrt{1^2 + 1}}{1 + 1^2} = \frac{1 \cdot \sqrt{2}}{2} = \frac{\sqrt{2}}{2} \] ### Final Answer Thus, the value of \(\frac{dy}{dx}\) at \(x = 1\) is: \[ \frac{\sqrt{2}}{2} \] ---
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    ML KHANNA|Exercise MESCELLANEOUS EXERCISE|3 Videos
  • DIFFERENTIATION

    ML KHANNA|Exercise PROBLEM SET-(3)|24 Videos
  • DIFFERENTIAL EQUATIONS

    ML KHANNA|Exercise MISCELLANEOUS EXERCISE (Matching Entries) |2 Videos
  • EXAMINATION PAPER -2013

    ML KHANNA|Exercise PAPER -II SECTION-3 (MATCHING LIST TYPE)|4 Videos

Similar Questions

Explore conceptually related problems

If y=sec(tan^(-1)x) , then (tan^(-1)x) , then (dy)/(dx)" at "x=1 is equal to

If y=x^(tan ^(-1)x) ,then (dy)/(dx)=

If y= sec ( tan sqrt x ) ,then (dy)/(dx) =

if y=tan(sin^(-1)x) then (dy)/(dx)

If y = tan^(-1) (sec x + tan x) " then " (dy)/(dx)= ?

if y=sec(tan^(-1)x)then(dy)/(dx) is

If Y = (1 + tan x)/(1 - tan x) , then (dy)/(dx) is