Home
Class 12
MATHS
If f(x) = cos ( log x) , then f(x^2) ...

If ` f(x) = cos ( log x) , then f(x^2) f(y^2) -1/2 [f((x^2)/(y^2))+f(x^2 y^2)]` has the value

A

`-2`

B

`-1`

C

`1/2`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the expression: \[ f(x^2) f(y^2) - \frac{1}{2} \left[ f\left(\frac{x^2}{y^2}\right) + f(x^2 y^2) \right] \] Given that \( f(x) = \cos(\log x) \), we can find \( f(x^2) \), \( f(y^2) \), \( f\left(\frac{x^2}{y^2}\right) \), and \( f(x^2 y^2) \). ### Step 1: Calculate \( f(x^2) \) and \( f(y^2) \) Using the definition of \( f(x) \): \[ f(x^2) = \cos(\log(x^2)) = \cos(2 \log x) \] \[ f(y^2) = \cos(\log(y^2)) = \cos(2 \log y) \] ### Step 2: Calculate \( f(x^2) f(y^2) \) Now, we can find \( f(x^2) f(y^2) \): \[ f(x^2) f(y^2) = \cos(2 \log x) \cos(2 \log y) \] ### Step 3: Calculate \( f\left(\frac{x^2}{y^2}\right) \) Next, we calculate \( f\left(\frac{x^2}{y^2}\right) \): \[ f\left(\frac{x^2}{y^2}\right) = \cos\left(\log\left(\frac{x^2}{y^2}\right)\right) = \cos(\log(x^2) - \log(y^2)) = \cos(2 \log x - 2 \log y) = \cos(2(\log x - \log y)) \] ### Step 4: Calculate \( f(x^2 y^2) \) Now, we calculate \( f(x^2 y^2) \): \[ f(x^2 y^2) = \cos(\log(x^2 y^2)) = \cos(\log(x^2) + \log(y^2)) = \cos(2 \log x + 2 \log y) = \cos(2(\log x + \log y)) \] ### Step 5: Substitute into the expression Now we substitute these values into the original expression: \[ f(x^2) f(y^2) - \frac{1}{2} \left[ f\left(\frac{x^2}{y^2}\right) + f(x^2 y^2) \right] \] This becomes: \[ \cos(2 \log x) \cos(2 \log y) - \frac{1}{2} \left[ \cos(2(\log x - \log y)) + \cos(2(\log x + \log y)) \right] \] ### Step 6: Use the cosine addition formula Using the cosine addition formula: \[ \cos A \cos B = \frac{1}{2} \left[ \cos(A + B) + \cos(A - B) \right] \] Let \( A = 2 \log x \) and \( B = 2 \log y \): \[ \cos(2 \log x) \cos(2 \log y) = \frac{1}{2} \left[ \cos(2 \log x + 2 \log y) + \cos(2 \log x - 2 \log y) \right] \] ### Step 7: Substitute back Now substituting back into our expression: \[ \frac{1}{2} \left[ \cos(2(\log x + \log y)) + \cos(2(\log x - \log y)) \right] - \frac{1}{2} \left[ \cos(2(\log x - \log y)) + \cos(2(\log x + \log y)) \right] \] ### Step 8: Simplify Notice that the two terms cancel out: \[ \frac{1}{2} \left[ \cos(2(\log x + \log y)) + \cos(2(\log x - \log y)) \right] - \frac{1}{2} \left[ \cos(2(\log x - \log y)) + \cos(2(\log x + \log y)) \right] = 0 \] ### Final Answer Thus, the value of the expression is: \[ \boxed{0} \]
Promotional Banner

Topper's Solved these Questions

  • FUNCTIONS

    ML KHANNA|Exercise PROBLEM SET (2) |40 Videos
  • FUNCTIONS

    ML KHANNA|Exercise PROBLEM SET (3) |71 Videos
  • EXPONENTIAL AND LOGARITHMIC SERIES

    ML KHANNA|Exercise Problem Set (2) (Self Assessment Test)|8 Videos
  • HEIGHTS AND DISTANCES

    ML KHANNA|Exercise Problem Set (3) FILL IN THE BLANKS|9 Videos

Similar Questions

Explore conceptually related problems

If f(x)=cos(log x) then f(x^(2))f(y^(2))-(1)/(2)[f((x^(2))/(2))+f((x^(2))/(y^(2)))] has the value has

If f(x)=cos(log x), " then " f(x)*f(y)-(1)/(2)[f((x)/(y))+f(xy)] has the value

If f(x)=cos(log x), then f(x)f(y)-(1)/(2)[f((x)/(y))+f(xy)]=

If f(x)=cos(log x), then f(x)f(y)-(1)/(2)[f((x)/(y))+f(xy)]=

If f(x)=cos(ln x) then f(x)f(y)-(1)/(2)(f((x)/(y))+f(xy)) has the value

If f(x)="cos"((log)_e x),t h e nf(x)f(y)-1/2[f(x/y)+f(x y)] has value (a) -1 (b) 1/2 (c) -2 (d) none of these