Home
Class 12
MATHS
If f(x) = sin ( log x) then the ...

If ` f(x) = sin ( log x) ` then the value of ` E=f (xy) + f(x/y) - 2f (x) cos ( log y)` is

A

`-1`

B

`0`

C

`1`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we start with the function given: \[ f(x) = \sin(\log x) \] We need to find the value of: \[ E = f(xy) + f\left(\frac{x}{y}\right) - 2f(x) \cos(\log y) \] ### Step 1: Calculate \( f(xy) \) Using the definition of \( f(x) \): \[ f(xy) = \sin(\log(xy)) = \sin(\log x + \log y) \] ### Step 2: Calculate \( f\left(\frac{x}{y}\right) \) Using the definition of \( f(x) \): \[ f\left(\frac{x}{y}\right) = \sin\left(\log\left(\frac{x}{y}\right)\right) = \sin(\log x - \log y) \] ### Step 3: Calculate \( f(x) \) Using the definition of \( f(x) \): \[ f(x) = \sin(\log x) \] ### Step 4: Substitute into \( E \) Now we substitute these values into the expression for \( E \): \[ E = \sin(\log x + \log y) + \sin(\log x - \log y) - 2\sin(\log x) \cos(\log y) \] ### Step 5: Use the sine addition and subtraction formulas Using the sine addition and subtraction formulas: \[ \sin(a + b) + \sin(a - b) = 2\sin(a)\cos(b) \] Let \( a = \log x \) and \( b = \log y \): \[ E = 2\sin(\log x)\cos(\log y) - 2\sin(\log x)\cos(\log y) \] ### Step 6: Simplify the expression Now, we can see that: \[ E = 2\sin(\log x)\cos(\log y) - 2\sin(\log x)\cos(\log y) = 0 \] Thus, the value of \( E \) is: \[ \boxed{0} \]
Promotional Banner

Topper's Solved these Questions

  • FUNCTIONS

    ML KHANNA|Exercise PROBLEM SET (2) |40 Videos
  • FUNCTIONS

    ML KHANNA|Exercise PROBLEM SET (3) |71 Videos
  • EXPONENTIAL AND LOGARITHMIC SERIES

    ML KHANNA|Exercise Problem Set (2) (Self Assessment Test)|8 Videos
  • HEIGHTS AND DISTANCES

    ML KHANNA|Exercise Problem Set (3) FILL IN THE BLANKS|9 Videos

Similar Questions

Explore conceptually related problems

If f(x) = sin^(-1) (sin ("log"_(2) x)) , then find the value of f(300)

If f (x) = ln _(x) (ln x ), then f'(e) =

f(x) =log _x (log x) ,then f'(x) at x =eis

If f (x) = log_(x) (log x) , then f'(x) at x = e is …….. .

If f(x)=(log)_(e)((log)_(e)x), then write the value of f'(e)

If f(x)=log(logx)," then "f'(e)=

If f(x)=log_(x)(ln x) then f'(x) at x=e is