Home
Class 12
MATHS
If f(x) = cos[pi^2] x + cos [-pi^2]x ...

If ` f(x) = cos[pi^2] x + cos [-pi^2]x ` where [x] stands for the greatest integer function then

A

`f(pi/2) =-1`

B

` f(pi )=1`

C

`f (-pi)=0`

D

`f(pi/4)=(1)/(sqrt(2))`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to analyze the function \( f(x) = \cos[\pi^2 x] + \cos[-\pi^2 x] \), where \([x]\) denotes the greatest integer function (also known as the floor function). ### Step-by-Step Solution: 1. **Evaluate \(\pi^2\)**: \[ \pi \approx 3.14 \implies \pi^2 \approx 9.86 \] The greatest integer less than or equal to \(9.86\) is \(9\). Thus, \([\pi^2] = 9\). 2. **Evaluate \(-\pi^2\)**: \[ -\pi^2 \approx -9.86 \] The greatest integer less than or equal to \(-9.86\) is \(-10\). Thus, \([- \pi^2] = -10\). 3. **Substitute into the function**: Now we can rewrite \(f(x)\): \[ f(x) = \cos[9x] + \cos[-10x] \] Since \(\cos(-\theta) = \cos(\theta)\), we have: \[ f(x) = \cos(9x) + \cos(10x) \] 4. **Evaluate \(f\left(\frac{\pi}{2}\right)\)**: \[ f\left(\frac{\pi}{2}\right) = \cos\left(9 \cdot \frac{\pi}{2}\right) + \cos\left(10 \cdot \frac{\pi}{2}\right) \] Simplifying: \[ = \cos\left(\frac{9\pi}{2}\right) + \cos(5\pi) = \cos\left(\frac{9\pi}{2}\right) + (-1) \] The angle \(\frac{9\pi}{2}\) can be simplified: \[ \frac{9\pi}{2} = 4\pi + \frac{\pi}{2} \implies \cos\left(\frac{9\pi}{2}\right) = \cos\left(\frac{\pi}{2}\right) = 0 \] Thus: \[ f\left(\frac{\pi}{2}\right) = 0 - 1 = -1 \] 5. **Evaluate \(f(\pi)\)**: \[ f(\pi) = \cos(9\pi) + \cos(10\pi) \] Since \(\cos(9\pi) = -1\) and \(\cos(10\pi) = 1\): \[ f(\pi) = -1 + 1 = 0 \] 6. **Evaluate \(f(-\pi)\)**: \[ f(-\pi) = \cos(-9\pi) + \cos(-10\pi) = \cos(9\pi) + \cos(10\pi) \] This gives: \[ f(-\pi) = -1 + 1 = 0 \] 7. **Evaluate \(f\left(\frac{\pi}{4}\right)\)**: \[ f\left(\frac{\pi}{4}\right) = \cos\left(9 \cdot \frac{\pi}{4}\right) + \cos\left(10 \cdot \frac{\pi}{4}\right) \] This simplifies to: \[ = \cos\left(\frac{9\pi}{4}\right) + \cos\left(\frac{10\pi}{4}\right) = \cos\left(2\pi + \frac{\pi}{4}\right) + \cos\left(2\pi + \frac{3\pi}{2}\right) \] Thus: \[ = \cos\left(\frac{\pi}{4}\right) + \cos\left(\frac{3\pi}{2}\right) = \frac{1}{\sqrt{2}} + 0 = \frac{1}{\sqrt{2}} \] ### Summary of Results: - \( f\left(\frac{\pi}{2}\right) = -1 \) - \( f(\pi) = 0 \) - \( f(-\pi) = 0 \) - \( f\left(\frac{\pi}{4}\right) = \frac{1}{\sqrt{2}} \)
Promotional Banner

Topper's Solved these Questions

  • FUNCTIONS

    ML KHANNA|Exercise PROBLEM SET (2) |40 Videos
  • FUNCTIONS

    ML KHANNA|Exercise PROBLEM SET (3) |71 Videos
  • EXPONENTIAL AND LOGARITHMIC SERIES

    ML KHANNA|Exercise Problem Set (2) (Self Assessment Test)|8 Videos
  • HEIGHTS AND DISTANCES

    ML KHANNA|Exercise Problem Set (3) FILL IN THE BLANKS|9 Videos

Similar Questions

Explore conceptually related problems

If f(x)= cos [(pi^(2))/(2)] x + sin[(-pi^(2))/(2)]x,[x] denoting the greatest integer function,then

If f:R to R is function defined by f(x) = [x]^3 cos ((2x-1)/2)pi , where [x] denotes the greatest integer function, then f is :

If f(x)=cos[(x^(2))/(2)]x+sin[-(x^(2))/(2)]x where [.] denotes the greatest integer function, thenwhich of the following is not correct

If f(x)=cos[(pi)/(x)]cos((pi)/(2)(x-1)); where [x] is the greatest integer function of x, then f(x) is continuous at :

If f(x)=cos[pi]x+cos[pi x], where [y] is the greatest integer function of y then f((pi)/(2)) is equal to

Let f(x) = (sin (pi [ x - pi]))/(1+[x^2]) where [] denotes the greatest integer function then f(x) is

If f: R to R is function defined by f(x) = [x-1] cos ( (2x -1)/(2)) pi , where [.] denotes the greatest integer function , then f is :

Range of the function e^(sin(x-[x])pi) where [*] stands for the greatest integer function is