Home
Class 12
MATHS
The function f (x) = log((1+x)/(1-x)) s...

The function `f (x) = log((1+x)/(1-x))` satisfies the equation

A

f(x+2) – 2f (x+1) + f (x) =0

B

`f((2x)/(1+x^2))=2f (x)`

C

`f(p) f(q) = f(p+q)`

D

` f(p) + f(q) = f((p+q)/(1+pq))`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to verify which of the given options satisfies the equation for the function \( f(x) = \log\left(\frac{1+x}{1-x}\right) \). ### Step-by-Step Solution: 1. **Check Option 1: \( f(x+2) = f(x) + 2 \)** Substitute \( x+2 \) into the function: \[ f(x+2) = \log\left(\frac{1+(x+2)}{1-(x+2)}\right) = \log\left(\frac{1+x+2}{1-x-2}\right) = \log\left(\frac{x+3}{-x-1}\right) \] Now, calculate \( f(x) + 2 \): \[ f(x) + 2 = \log\left(\frac{1+x}{1-x}\right) + 2 = \log\left(\frac{1+x}{1-x}\right) + \log(e^2) = \log\left(\frac{(1+x)e^2}{1-x}\right) \] Since \( f(x+2) \) does not equal \( f(x) + 2 \), **Option 1 is incorrect**. 2. **Check Option 2: \( f\left(\frac{2x}{1+x^2}\right) = 2f(x) \)** Substitute \( \frac{2x}{1+x^2} \) into the function: \[ f\left(\frac{2x}{1+x^2}\right) = \log\left(\frac{1+\frac{2x}{1+x^2}}{1-\frac{2x}{1+x^2}}\right) \] Simplifying the numerator: \[ 1 + \frac{2x}{1+x^2} = \frac{1+x^2+2x}{1+x^2} = \frac{(x+1)^2}{1+x^2} \] Simplifying the denominator: \[ 1 - \frac{2x}{1+x^2} = \frac{1+x^2-2x}{1+x^2} = \frac{(1-x)^2}{1+x^2} \] Thus, \[ f\left(\frac{2x}{1+x^2}\right) = \log\left(\frac{(x+1)^2}{(1-x)^2}\right) = 2\log\left(\frac{x+1}{1-x}\right) = 2f(x) \] Therefore, **Option 2 is correct**. 3. **Check Option 3: \( f(p)f(q) = f(p+q) \)** Calculate \( f(p)f(q) \): \[ f(p) = \log\left(\frac{1+p}{1-p}\right), \quad f(q) = \log\left(\frac{1+q}{1-q}\right) \] Thus, \[ f(p)f(q) = \log\left(\frac{1+p}{1-p}\right) + \log\left(\frac{1+q}{1-q}\right) = \log\left(\frac{(1+p)(1+q)}{(1-p)(1-q)}\right) \] Now, calculate \( f(p+q) \): \[ f(p+q) = \log\left(\frac{1+(p+q)}{1-(p+q)}\right) \] Since \( f(p)f(q) \neq f(p+q) \), **Option 3 is incorrect**. 4. **Check Option 4: \( f(p) + f(q) = f(p+q) \)** From the previous calculations: \[ f(p) + f(q) = \log\left(\frac{1+p}{1-p}\right) + \log\left(\frac{1+q}{1-q}\right) = \log\left(\frac{(1+p)(1+q)}{(1-p)(1-q)}\right) \] This can be simplified to: \[ = \log\left(\frac{(1+p)(1+q)}{(1-p)(1-q)}\right) = f(p+q) \] Therefore, **Option 4 is correct**. ### Conclusion: The correct options are **Option 2 and Option 4**.
Promotional Banner

Topper's Solved these Questions

  • FUNCTIONS

    ML KHANNA|Exercise PROBLEM SET (2) |40 Videos
  • FUNCTIONS

    ML KHANNA|Exercise PROBLEM SET (3) |71 Videos
  • EXPONENTIAL AND LOGARITHMIC SERIES

    ML KHANNA|Exercise Problem Set (2) (Self Assessment Test)|8 Videos
  • HEIGHTS AND DISTANCES

    ML KHANNA|Exercise Problem Set (3) FILL IN THE BLANKS|9 Videos

Similar Questions

Explore conceptually related problems

The function f(x)=log_(10)((1+x)/(1-x)) satisfies the equation

The function f(x)=(log)(1+x)/(1-x) satisfy the equation

The function f(x)=log(x+sqrt(x^(2)+1)) is

The function f(x)=log(x+sqrt(x^(2)+1)), is

The function f(x) = sec[log(x + sqrt(1+x^2))] is

The function f(x)=log (1+x)-(2+x) is increasing in

The function F(x)=int_(0)^(x) log((1-x)/(1+x))dx , is