Home
Class 12
MATHS
A function f :R to R satisfies sin x co...

A function f :`R to R` satisfies `sin x cos y [f (2x +2y) - f(2x - 2y)] =cos x sin y [f(2x +2y) + f (2x - 2y)]` If `f'(0) = 1/2`, then f (x) =

A

f"(x)

B

`- F"(x)`

C

` 4f"(x)`

D

`- 4f ''(x)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given problem step by step, we start with the functional equation provided: **Given:** \[ \sin x \cos y [f(2x + 2y) - f(2x - 2y)] = \cos x \sin y [f(2x + 2y) + f(2x - 2y)] \] **Step 1: Rearranging the equation** We can rearrange the equation to isolate terms involving \( f(2x + 2y) \) and \( f(2x - 2y) \). \[ \sin x \cos y f(2x + 2y) - \sin x \cos y f(2x - 2y) = \cos x \sin y f(2x + 2y) + \cos x \sin y f(2x - 2y) \] **Step 2: Collecting like terms** We can collect the terms involving \( f(2x + 2y) \) on one side and those involving \( f(2x - 2y) \) on the other side: \[ \sin x \cos y f(2x + 2y) - \cos x \sin y f(2x + 2y) = \sin x \cos y f(2x - 2y) + \cos x \sin y f(2x - 2y) \] **Step 3: Factoring out common terms** Factoring out \( f(2x + 2y) \) and \( f(2x - 2y) \): \[ f(2x + 2y) (\sin x \cos y - \cos x \sin y) = f(2x - 2y) (\sin x \cos y + \cos x \sin y) \] Using the sine addition and subtraction formulas, we can rewrite this as: \[ f(2x + 2y) \sin(x - y) = f(2x - 2y) \sin(x + y) \] **Step 4: Setting up a ratio** We can express the relationship as: \[ \frac{f(2x + 2y)}{f(2x - 2y)} = \frac{\sin(x + y)}{\sin(x - y)} \] **Step 5: Substituting \( x + y = \alpha \)** Let \( \alpha = x + y \). Then \( x - y = \alpha - 2y \): \[ \frac{f(2\alpha)}{f(2(\alpha - 2y))} = \frac{\sin \alpha}{\sin(\alpha - 2y)} \] **Step 6: Finding a general form for \( f(x) \)** Assuming \( f(x) \) is of the form \( f(x) = r \sin\left(\frac{x}{2}\right) \), we can differentiate to find \( f'(0) \). **Step 7: Using the condition \( f'(0) = \frac{1}{2} \)** Differentiating \( f(x) \): \[ f'(x) = r \cdot \frac{1}{2} \cos\left(\frac{x}{2}\right) \] Evaluating at \( x = 0 \): \[ f'(0) = r \cdot \frac{1}{2} \cdot 1 = \frac{r}{2} \] Setting this equal to \( \frac{1}{2} \): \[ \frac{r}{2} = \frac{1}{2} \implies r = 1 \] **Step 8: Final form of \( f(x) \)** Thus, we have: \[ f(x) = \sin\left(\frac{x}{2}\right) \] ### Final Answer: \[ f(x) = \sin\left(\frac{x}{2}\right) \]
Promotional Banner

Topper's Solved these Questions

  • FUNCTIONS

    ML KHANNA|Exercise PROBLEM SET (2) |40 Videos
  • FUNCTIONS

    ML KHANNA|Exercise PROBLEM SET (3) |71 Videos
  • EXPONENTIAL AND LOGARITHMIC SERIES

    ML KHANNA|Exercise Problem Set (2) (Self Assessment Test)|8 Videos
  • HEIGHTS AND DISTANCES

    ML KHANNA|Exercise Problem Set (3) FILL IN THE BLANKS|9 Videos

Similar Questions

Explore conceptually related problems

A function f: R rarr R" satisfies sin x cos y "(f(2x+2y)-f(2x-2y))= cos x sin y (f(2x+2y)+f(2x-2y)). " If "f'(0)=(1)/(2), then

A function f: R->R satisfies sinxcosy(f(2x+2y)-f(2x-2y)=cosxsiny(f(2x+2y)+f(2x-2y))dot If f^(prime)(0)=1/2,t h e n (a)f^(prime)(x)=f(x)=0 (b)4f^(x)+f(x)=0 (c)f^(x)+f(x)=0 (d)4f^(x)-f(x)=0

A function f : R to R Satisfies the following conditions (i) f (x) ne 0 AA x in R (ii) f(x +y)= f(x) f(y) AA x, y, in R (iii) f(x) is differentiable (iv ) f'(0) =2 The derivative of f(x) satisfies the equation

A function f : R to R Satisfies the following conditions (i) f (x) ne 0 AA x in R (ii) f(x +y)= f(x) f(y) AA x, y, in R (iii) f(x) is differentiable (iv ) f'(0) =2 The value of f(0) is

A function f:R rarr R satisfies the equation f(x+y)=f(x)f(y) for allx,y in R and f(x)!=0 for all x in R .If f(x) is differentiable at x=0 .If f(x)=2, then prove that f'(x)=2f(x) .

If f(x+y) = f(x) + f(y) + |x|y+xy^(2),AA x, y in R and f'(0) = 0 , then

A function f:R rarr R^(+) satisfies f(x+y)=f(x)f(y)AA x in R If f'(0)=2 then f'(x)=