Home
Class 12
MATHS
Given f (x) =log {(1 + x)//(1-x)}and g(x...

Given `f (x) =log {(1 + x)//(1-x)}`and `g(x) = (3x+x^3)//(1+3x^2).` Then f (g(x)] equals

A

`-f(x)`

B

`3[f(x)]`

C

`[f(x)]^3`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate \( f(g(x)) \) where \( f(x) = \log\left(\frac{1+x}{1-x}\right) \) and \( g(x) = \frac{3x + x^3}{1 + 3x^2} \). ### Step-by-Step Solution: 1. **Substitute \( g(x) \) into \( f(x) \)**: \[ f(g(x)) = f\left(\frac{3x + x^3}{1 + 3x^2}\right) \] This means we will replace \( x \) in \( f(x) \) with \( g(x) \). 2. **Write out \( f(g(x)) \)**: \[ f(g(x)) = \log\left(\frac{1 + \frac{3x + x^3}{1 + 3x^2}}{1 - \frac{3x + x^3}{1 + 3x^2}}\right) \] 3. **Simplify the numerator**: \[ 1 + \frac{3x + x^3}{1 + 3x^2} = \frac{(1 + 3x^2) + (3x + x^3)}{1 + 3x^2} = \frac{1 + 3x + 3x^2 + x^3}{1 + 3x^2} \] 4. **Simplify the denominator**: \[ 1 - \frac{3x + x^3}{1 + 3x^2} = \frac{(1 + 3x^2) - (3x + x^3)}{1 + 3x^2} = \frac{1 - 3x + 3x^2 - x^3}{1 + 3x^2} \] 5. **Combine the results**: \[ f(g(x)) = \log\left(\frac{\frac{1 + 3x + 3x^2 + x^3}{1 + 3x^2}}{\frac{1 - 3x + 3x^2 - x^3}{1 + 3x^2}}\right) \] The \( 1 + 3x^2 \) cancels out: \[ f(g(x)) = \log\left(\frac{1 + 3x + 3x^2 + x^3}{1 - 3x + 3x^2 - x^3}\right) \] 6. **Factor the numerator and denominator**: The numerator can be factored as: \[ 1 + 3x + 3x^2 + x^3 = (x + 1)^3 \] The denominator can be factored as: \[ 1 - 3x + 3x^2 - x^3 = (1 - x)^3 \] 7. **Final expression**: \[ f(g(x)) = \log\left(\frac{(x + 1)^3}{(1 - x)^3}\right) \] This can be simplified using properties of logarithms: \[ f(g(x)) = 3 \log\left(\frac{x + 1}{1 - x}\right) \] 8. **Recognize the function**: Since \( f(x) = \log\left(\frac{1+x}{1-x}\right) \), we can express our final result as: \[ f(g(x)) = 3f(x) \] ### Conclusion: Thus, the final answer is: \[ f(g(x)) = 3f(x) \]
Promotional Banner

Topper's Solved these Questions

  • FUNCTIONS

    ML KHANNA|Exercise PROBLEM SET (2) |40 Videos
  • FUNCTIONS

    ML KHANNA|Exercise PROBLEM SET (3) |71 Videos
  • EXPONENTIAL AND LOGARITHMIC SERIES

    ML KHANNA|Exercise Problem Set (2) (Self Assessment Test)|8 Videos
  • HEIGHTS AND DISTANCES

    ML KHANNA|Exercise Problem Set (3) FILL IN THE BLANKS|9 Videos

Similar Questions

Explore conceptually related problems

Given f(x)=log((1+x)/(1-x)) and g(x) = (3x+x^(3))/(1+3x^(2)) , then fog(x) is

Given f(x)=log_(10)((1+x)/(1-x)) and g(x)=(3x+x^(3))/(1+3x^(2)) , then fog(x) equals

If f(x)=log((1+x)/(1-x)) and g(x)=((3x+x^(3))/(1+3x^(2))) then f(g(x)) is equal to f(3x)(b)quad {f(x)}^(3) (c) 3f(x)(d)-f(x)

Given f(x)=log[((1+x))/((1-x))]andg(x)=((3x+x^(2)))/((1+3x^(2))) , then what is f[g(x)] equal to ?

If f(x) = 3x + 1 and g(x) = x^(2) - 1 , then (f + g) (x) is equal to

Let f(x) = ln(x-1)(x-3) and g(x) = ln(x-1) + ln(x-3) then,

If f (x) = 3x -1, g (x) =x ^(2) + 1 then f [g (x)]=

If f(x)=log_(e)((1+x)/(1-x)),g(x)=(3x+x^(3))/(1+3x^(2))andgof(t)=g(f(t)) then what is g^(@)f((e-1)/(e+1)) equal to?