Home
Class 12
MATHS
Let f (x) = (alpha x)/( x+1) , x ne ...

Let `f (x) = (alpha x)/( x+1) , x ne -1` . Then, for what value of `alpha` is `f{f (x)} = x?`

A

`sqrt(2)`

B

`- sqrt(2)`

C

`1`

D

`-1`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( \alpha \) such that \( f(f(x)) = x \), where \( f(x) = \frac{\alpha x}{x + 1} \). ### Step-by-step Solution: 1. **Define the function**: \[ f(x) = \frac{\alpha x}{x + 1} \] 2. **Find \( f(f(x)) \)**: We need to substitute \( f(x) \) into itself: \[ f(f(x)) = f\left(\frac{\alpha x}{x + 1}\right) \] Substitute \( \frac{\alpha x}{x + 1} \) into \( f(x) \): \[ f\left(\frac{\alpha x}{x + 1}\right) = \frac{\alpha \left(\frac{\alpha x}{x + 1}\right)}{\frac{\alpha x}{x + 1} + 1} \] 3. **Simplify the denominator**: The denominator can be simplified as follows: \[ \frac{\alpha x}{x + 1} + 1 = \frac{\alpha x + (x + 1)}{x + 1} = \frac{(\alpha + 1)x + 1}{x + 1} \] 4. **Substituting back**: Now, substituting this back into the function: \[ f(f(x)) = \frac{\alpha \left(\frac{\alpha x}{x + 1}\right)}{\frac{(\alpha + 1)x + 1}{x + 1}} = \frac{\alpha^2 x}{(\alpha + 1)x + 1} \] 5. **Set \( f(f(x)) = x \)**: We set the expression equal to \( x \): \[ \frac{\alpha^2 x}{(\alpha + 1)x + 1} = x \] 6. **Cross-multiply**: Cross-multiplying gives: \[ \alpha^2 x = x \cdot ((\alpha + 1)x + 1) \] Expanding the right-hand side: \[ \alpha^2 x = (\alpha + 1)x^2 + x \] 7. **Rearranging the equation**: Rearranging gives: \[ (\alpha + 1)x^2 + (1 - \alpha^2)x = 0 \] 8. **Factoring out \( x \)**: Factoring out \( x \): \[ x \left((\alpha + 1)x + (1 - \alpha^2)\right) = 0 \] For this equation to hold for all \( x \), the coefficient of \( x \) must equal zero: \[ \alpha + 1 = 0 \quad \text{and} \quad 1 - \alpha^2 = 0 \] 9. **Solving the equations**: From \( \alpha + 1 = 0 \): \[ \alpha = -1 \] From \( 1 - \alpha^2 = 0 \): \[ \alpha^2 = 1 \implies \alpha = 1 \text{ or } \alpha = -1 \] 10. **Conclusion**: The values of \( \alpha \) that satisfy \( f(f(x)) = x \) are \( \alpha = 1 \) or \( \alpha = -1 \). ### Final Answer: The values of \( \alpha \) for which \( f(f(x)) = x \) are \( \alpha = 1 \) and \( \alpha = -1 \). ---
Promotional Banner

Topper's Solved these Questions

  • FUNCTIONS

    ML KHANNA|Exercise PROBLEM SET (2) |40 Videos
  • FUNCTIONS

    ML KHANNA|Exercise PROBLEM SET (3) |71 Videos
  • EXPONENTIAL AND LOGARITHMIC SERIES

    ML KHANNA|Exercise Problem Set (2) (Self Assessment Test)|8 Videos
  • HEIGHTS AND DISTANCES

    ML KHANNA|Exercise Problem Set (3) FILL IN THE BLANKS|9 Videos

Similar Questions

Explore conceptually related problems

Let f(x)=(alphax)/(x+1),x ne -1 . Then, for what values of alpha is f[f(x)]=x?

Let f(x)=(alpha x)/((x+1)),x!=-1. The for what value of alpha is f(f(x))=x( a )sqrt(2)(b)-sqrt(2)(c)1

Let f(x)=(alpha x)/(x+1),x!=-1. Then write the value of alpha satisfing f(f(x))=x for all x!=-1

Let f(x) = (alpha x^(2))/(x + 1), x ne - 1 , The value of alpha for which f(a) = a , (a ne 0 ) is

" Let "f(x)=(alpha x)/(x+1),x!=-1" and "f(f(x))=x" ,then the value of "(alpha^(2))/(2)" is "

Let f : R - {(alpha )/(6) } to R be defined by f (x) = ( 3x + 3)/(6x - alpha). Then the value of alpha for which (fof) (x) = x , for all x in R -{(alpha)/(6)}, is :

Let f(x)=(alpha x)/(x+1) Then the value of alpha for which f(f(x)=x is

If f(x) = (1)/(1 -x) x ne 1 and g(x) = (x-1)/(x) , x ne0 , then the value of g[f(x)] is :

If f(x)=(x+1)/(x-1), x ne 1 , find f(f(f(f(2)))))