Home
Class 12
MATHS
If f (x) =(ax +b)/( cx +d)and (fof) x= x...

If `f (x) =(ax +b)/( cx +d)`and (fof) x= x, `then

A

a=b=1

B

`d=a`

C

`d=-a`

D

`a=b=c=d=1`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the conditions under which the function \( f(f(x)) = x \) holds true for the function defined as: \[ f(x) = \frac{ax + b}{cx + d} \] ### Step 1: Find \( f(f(x)) \) First, we need to compute \( f(f(x)) \). We start by substituting \( f(x) \) into itself: \[ f(f(x)) = f\left(\frac{ax + b}{cx + d}\right) \] Using the definition of \( f(x) \): \[ f(f(x)) = \frac{a\left(\frac{ax + b}{cx + d}\right) + b}{c\left(\frac{ax + b}{cx + d}\right) + d} \] ### Step 2: Simplify the expression Now we simplify the numerator and denominator separately. **Numerator:** \[ = \frac{a(ax + b) + b(cx + d)}{cx + d} = \frac{a^2x + ab + bcx + bd}{cx + d} = \frac{(a^2 + bc)x + (ab + bd)}{cx + d} \] **Denominator:** \[ = c\left(\frac{ax + b}{cx + d}\right) + d = \frac{c(ax + b) + d(cx + d)}{cx + d} = \frac{acx + bc + dcx + d^2}{cx + d} = \frac{(ac + dc)x + (bc + d^2)}{cx + d} \] ### Step 3: Combine and simplify \( f(f(x)) \) Thus, we have: \[ f(f(x)) = \frac{(a^2 + bc)x + (ab + bd)}{(ac + dc)x + (bc + d^2)} \] ### Step 4: Set \( f(f(x)) = x \) Now, we set this equal to \( x \): \[ \frac{(a^2 + bc)x + (ab + bd)}{(ac + dc)x + (bc + d^2)} = x \] ### Step 5: Cross multiply Cross multiplying gives us: \[ (a^2 + bc)x + (ab + bd) = x((ac + dc)x + (bc + d^2)) \] Expanding the right side: \[ (a^2 + bc)x + (ab + bd) = (ac + dc)x^2 + (bc + d^2)x \] ### Step 6: Rearranging the equation Rearranging the equation, we get: \[ 0 = (ac + dc)x^2 + (bc + d^2 - a^2 - bc)x - (ab + bd) \] ### Step 7: Coefficients must equal zero For this quadratic equation to hold for all \( x \), the coefficients of \( x^2 \), \( x \), and the constant term must all equal zero: 1. \( ac + dc = 0 \) 2. \( bc + d^2 - a^2 - bc = 0 \) 3. \( - (ab + bd) = 0 \) ### Step 8: Solve the equations From the first equation: \[ c(a + d) = 0 \] This implies either \( c = 0 \) or \( a + d = 0 \). From the second equation: \[ d^2 - a^2 = 0 \implies d^2 = a^2 \implies d = a \text{ or } d = -a \] From the third equation: \[ ab + bd = 0 \implies b(a + d) = 0 \] This implies either \( b = 0 \) or \( a + d = 0 \). ### Conclusion Thus, the conditions derived are: 1. If \( c \neq 0 \), then \( a + d = 0 \) (i.e., \( d = -a \)). 2. If \( b = 0 \), the conditions still hold.
Promotional Banner

Topper's Solved these Questions

  • FUNCTIONS

    ML KHANNA|Exercise PROBLEM SET (2) |40 Videos
  • FUNCTIONS

    ML KHANNA|Exercise PROBLEM SET (3) |71 Videos
  • EXPONENTIAL AND LOGARITHMIC SERIES

    ML KHANNA|Exercise Problem Set (2) (Self Assessment Test)|8 Videos
  • HEIGHTS AND DISTANCES

    ML KHANNA|Exercise Problem Set (3) FILL IN THE BLANKS|9 Videos

Similar Questions

Explore conceptually related problems

Let f(x) = (ax +b)/(cx + d) (da-cb ne 0, c ne0) then f(x) has

If f(x)=(a-x^(5))^(1/5) than (fof) (x)=

If f(x) = x + 1 , find d/(dx)("fof")(x) .

If f(x)=(x)/(sqrt(1-x^(2))) then (fof)(x)=

If f(x) = (x)/(sqrt(1+ x^(2))) , then (fof) (x) =

Let f(x)=(ax+b)/(cx+d) . Then the fof (x) =x provided that

Let f(x)=(ax+b)/(cx+d). Then the fof(x)=x provided that : (a!=0,b!=0,c!=0,d!=0)