Home
Class 12
MATHS
If f (x)=sin^2 x+ sin^2 (x + (pi)/(3) ) ...

If `f (x)=sin^2 x+ sin^2 (x + (pi)/(3) ) + cos x cos(x+ pi/3)` and g (5/4) = 1, then (gof) x is

A

polynomial of first degree in sin x,cos X

B

a constant function

C

polynomial of 2nd degree in sin x,cos x

D

none

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we will start with the function \( f(x) \) and simplify it, then we will use the given information about \( g \) to find \( (g \circ f)(x) \). ### Step 1: Simplifying \( f(x) \) Given: \[ f(x) = \sin^2 x + \sin^2\left(x + \frac{\pi}{3}\right) + \cos x \cos\left(x + \frac{\pi}{3}\right) \] We will simplify each term in \( f(x) \). 1. **First Term**: \( \sin^2 x \) remains as is. 2. **Second Term**: \[ \sin^2\left(x + \frac{\pi}{3}\right) = \left(\sin x \cos\frac{\pi}{3} + \cos x \sin\frac{\pi}{3}\right)^2 \] Using \( \cos\frac{\pi}{3} = \frac{1}{2} \) and \( \sin\frac{\pi}{3} = \frac{\sqrt{3}}{2} \): \[ = \left(\sin x \cdot \frac{1}{2} + \cos x \cdot \frac{\sqrt{3}}{2}\right)^2 \] Expanding this: \[ = \frac{1}{4} \sin^2 x + \frac{3}{4} \cos^2 x + \frac{\sqrt{3}}{2} \sin x \cos x \] 3. **Third Term**: \[ \cos x \cos\left(x + \frac{\pi}{3}\right) = \cos x \left(\cos x \cos\frac{\pi}{3} - \sin x \sin\frac{\pi}{3}\right) \] Expanding this: \[ = \cos x \left(\cos x \cdot \frac{1}{2} - \sin x \cdot \frac{\sqrt{3}}{2}\right) = \frac{1}{2} \cos^2 x - \frac{\sqrt{3}}{2} \sin x \cos x \] Now, combining all these terms: \[ f(x) = \sin^2 x + \left(\frac{1}{4} \sin^2 x + \frac{3}{4} \cos^2 x + \frac{\sqrt{3}}{2} \sin x \cos x\right) + \left(\frac{1}{2} \cos^2 x - \frac{\sqrt{3}}{2} \sin x \cos x\right) \] ### Step 2: Combine Like Terms Combining all the terms: - The \( \sin^2 x \) terms: \[ \sin^2 x + \frac{1}{4} \sin^2 x = \frac{5}{4} \sin^2 x \] - The \( \cos^2 x \) terms: \[ \frac{3}{4} \cos^2 x + \frac{1}{2} \cos^2 x = \frac{3}{4} \cos^2 x + \frac{2}{4} \cos^2 x = \frac{5}{4} \cos^2 x \] - The mixed terms: \[ \frac{\sqrt{3}}{2} \sin x \cos x - \frac{\sqrt{3}}{2} \sin x \cos x = 0 \] Thus, we have: \[ f(x) = \frac{5}{4}(\sin^2 x + \cos^2 x) = \frac{5}{4} \] ### Step 3: Finding \( g(f(x)) \) Since we found that \( f(x) = \frac{5}{4} \), we can substitute this into \( g \): \[ g(f(x)) = g\left(\frac{5}{4}\right) \] Given that \( g\left(\frac{5}{4}\right) = 1 \), we conclude: \[ g(f(x)) = 1 \] ### Final Answer Thus, \( (g \circ f)(x) = 1 \). ---
Promotional Banner

Topper's Solved these Questions

  • FUNCTIONS

    ML KHANNA|Exercise PROBLEM SET (2) |40 Videos
  • FUNCTIONS

    ML KHANNA|Exercise PROBLEM SET (3) |71 Videos
  • EXPONENTIAL AND LOGARITHMIC SERIES

    ML KHANNA|Exercise Problem Set (2) (Self Assessment Test)|8 Videos
  • HEIGHTS AND DISTANCES

    ML KHANNA|Exercise Problem Set (3) FILL IN THE BLANKS|9 Videos

Similar Questions

Explore conceptually related problems

If f(x)=sin^(2)x+sin^(2)(x+(pi)/(3))+cos x cos(x+(pi)/(3))andg((5)/(4))=1 then (gof)(x) is

If f(x)=cos^(2)x+cos^(2)(x+(pi)/(3))+sinxsin(x+(pi)/(3)) and g((5)/(4))=3 , then (d)/(dx)(gof(x)) =

If f: R->R be given by f(x)=sin^2x+sin^2(x+pi//3)+cosx\ cos(x+pi//3) for all x in R , and g: R->R be such that g(5//4)=1 , then prove that gof: R->R is a constant function.

At x = (5pi)/(6), f(x)= 2sin 3x+3 cos 3x is

f(x)=1+2sin x+3cos^(2)x,0<=x<=(2 pi)/(3)

If f'(x)=sin x+sin4x cos x then f'(2x^(2)+(pi)/(2))=