Home
Class 12
MATHS
If f (x) = cos^2 x + cos^2 (pi/3 +x)- co...

If `f (x) = cos^2 x + cos^2 (pi/3 +x)- cos x cos (pi/3 + x)` then f (x) is :

A

odd

B

even

C

periodic

D

`f(0) = f(1)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the function \( f(x) = \cos^2 x + \cos^2 \left(\frac{\pi}{3} + x\right) - \cos x \cos \left(\frac{\pi}{3} + x\right) \), we will simplify it step by step. ### Step 1: Expand \( \cos^2 \left(\frac{\pi}{3} + x\right) \) Using the cosine addition formula: \[ \cos(a + b) = \cos a \cos b - \sin a \sin b \] we can express \( \cos \left(\frac{\pi}{3} + x\right) \): \[ \cos \left(\frac{\pi}{3} + x\right) = \cos \frac{\pi}{3} \cos x - \sin \frac{\pi}{3} \sin x \] Substituting the known values: \[ \cos \frac{\pi}{3} = \frac{1}{2}, \quad \sin \frac{\pi}{3} = \frac{\sqrt{3}}{2} \] Thus, \[ \cos \left(\frac{\pi}{3} + x\right) = \frac{1}{2} \cos x - \frac{\sqrt{3}}{2} \sin x \] ### Step 2: Calculate \( \cos^2 \left(\frac{\pi}{3} + x\right) \) Now we square the expression: \[ \cos^2 \left(\frac{\pi}{3} + x\right) = \left(\frac{1}{2} \cos x - \frac{\sqrt{3}}{2} \sin x\right)^2 \] Expanding this: \[ = \left(\frac{1}{2}\right)^2 \cos^2 x - 2 \cdot \frac{1}{2} \cdot \frac{\sqrt{3}}{2} \cos x \sin x + \left(\frac{\sqrt{3}}{2}\right)^2 \sin^2 x \] \[ = \frac{1}{4} \cos^2 x - \frac{\sqrt{3}}{2} \cos x \sin x + \frac{3}{4} \sin^2 x \] ### Step 3: Substitute into \( f(x) \) Now substitute this back into \( f(x) \): \[ f(x) = \cos^2 x + \left(\frac{1}{4} \cos^2 x - \frac{\sqrt{3}}{2} \cos x \sin x + \frac{3}{4} \sin^2 x\right) - \cos x \left(\frac{1}{2} \cos x - \frac{\sqrt{3}}{2} \sin x\right) \] ### Step 4: Simplify \( f(x) \) Combine like terms: \[ = \cos^2 x + \frac{1}{4} \cos^2 x + \frac{3}{4} \sin^2 x - \frac{\sqrt{3}}{2} \cos x \sin x - \left(\frac{1}{2} \cos^2 x - \frac{\sqrt{3}}{2} \cos x \sin x\right) \] \[ = \left(1 + \frac{1}{4} - \frac{1}{2}\right) \cos^2 x + \frac{3}{4} \sin^2 x - \left(- \frac{\sqrt{3}}{2} + \frac{\sqrt{3}}{2}\right) \cos x \sin x \] \[ = \frac{3}{4} \cos^2 x + \frac{3}{4} \sin^2 x \] ### Step 5: Factor out the common term Factoring out \( \frac{3}{4} \): \[ f(x) = \frac{3}{4} (\cos^2 x + \sin^2 x) \] Using the Pythagorean identity \( \cos^2 x + \sin^2 x = 1 \): \[ f(x) = \frac{3}{4} \cdot 1 = \frac{3}{4} \] ### Conclusion Thus, the function \( f(x) \) simplifies to a constant value: \[ f(x) = \frac{3}{4} \]
Promotional Banner

Topper's Solved these Questions

  • FUNCTIONS

    ML KHANNA|Exercise PROBLEM SET (2) |40 Videos
  • FUNCTIONS

    ML KHANNA|Exercise PROBLEM SET (3) |71 Videos
  • EXPONENTIAL AND LOGARITHMIC SERIES

    ML KHANNA|Exercise Problem Set (2) (Self Assessment Test)|8 Videos
  • HEIGHTS AND DISTANCES

    ML KHANNA|Exercise Problem Set (3) FILL IN THE BLANKS|9 Videos

Similar Questions

Explore conceptually related problems

f(x)=cos^(2)x+cos^(2)(pi/3+x)-cosx*cos(x+pi/3) is

The value of cos^(2)x + cos^(2) (pi/3 + x) - cos x *cos(pi/3+ x) is

Let f be a function defined on [-(pi)/(2), (pi)/(2)] by f(x) = 3 cos^(4) x-6 cos^(3) x - 6 cos^(2) x-3 . Then the range of f(x) is

Prove that the function: f(x)=cos^2x+cos^2(pi/3+x)-cosx*cos(pi/3+x) is constant function. Find the value of that constant

The range of the function f(x) = log_(sqrt5)(3 + cos ((3pi)/4 + x) + cos ((pi)/4 + x) + cos ((pi)/4 - x) - cos ((3pi)/4 - x)) is :

The range of the function f(x) = log_(sqrt5)(3 + cos ((3pi)/4 + x) + cos ((pi)/4 + x) + cos ((pi)/4 - x) - cos ((3pi)/4 - x)) is :

If f (X) = 2 sin 3 x + 3 cos 3 x , then at x = ( 5 pi)/( 6) , f (x) is