Home
Class 12
MATHS
If f(x) = 1//(1-x) then f f {f (x)}]=...

If `f(x)` = `1//(1-x)` then f f {f (x)}]=

A

0

B

x

C

`-x`

D

none

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find \( f(f(f(x))) \) given the function \( f(x) = \frac{1}{1-x} \). ### Step 1: Find \( f(f(x)) \) 1. Start with the function: \[ f(x) = \frac{1}{1-x} \] 2. Now, we need to find \( f(f(x)) \): \[ f(f(x)) = f\left(\frac{1}{1-x}\right) \] 3. Substitute \( \frac{1}{1-x} \) into the function: \[ f\left(\frac{1}{1-x}\right) = \frac{1}{1 - \frac{1}{1-x}} \] 4. Simplify the expression inside the function: \[ 1 - \frac{1}{1-x} = \frac{(1-x) - 1}{1-x} = \frac{-x}{1-x} \] 5. Therefore, we have: \[ f(f(x)) = \frac{1}{\frac{-x}{1-x}} = \frac{1-x}{-x} = \frac{x-1}{x} \] ### Step 2: Find \( f(f(f(x))) \) 1. Now we need to find \( f(f(f(x))) \): \[ f(f(f(x))) = f\left(\frac{x-1}{x}\right) \] 2. Substitute \( \frac{x-1}{x} \) into the function: \[ f\left(\frac{x-1}{x}\right) = \frac{1}{1 - \frac{x-1}{x}} \] 3. Simplify the expression inside the function: \[ 1 - \frac{x-1}{x} = \frac{x - (x-1)}{x} = \frac{1}{x} \] 4. Therefore, we have: \[ f(f(f(x))) = \frac{1}{\frac{1}{x}} = x \] ### Final Result Thus, we find that: \[ f(f(f(x))) = x \]
Promotional Banner

Topper's Solved these Questions

  • FUNCTIONS

    ML KHANNA|Exercise PROBLEM SET (2) |40 Videos
  • FUNCTIONS

    ML KHANNA|Exercise PROBLEM SET (3) |71 Videos
  • EXPONENTIAL AND LOGARITHMIC SERIES

    ML KHANNA|Exercise Problem Set (2) (Self Assessment Test)|8 Videos
  • HEIGHTS AND DISTANCES

    ML KHANNA|Exercise Problem Set (3) FILL IN THE BLANKS|9 Videos

Similar Questions

Explore conceptually related problems

If f(x)=(1)/(1-x), show that f[f{f(x)}]=x

If f(x)=(x-1)/(x+1), then find f{f(x)}

f(x)=(1-x)/(1+x) then f{f((1)/(x))}

If f(x)=(1-x)/(1+x) then f{f((1)/(x))}

f(x)=(1)/(1-x), thenprovethatf [f{f(x)}]=x

If f(x)=1/(1-x) show that f(f(f(x)))=x

If f(x)=(1)/(1-x) , then int(f(f(f(x))))dx=

If f(x)=(2)/(1+x)-1 show that f[f{f(x)}]=f(x)

If f(x)=(1)/((1-x)) and g(x)=f[f{f(x))} then g(x) is discontinuous at