Home
Class 12
MATHS
The inverse of the function y =(10^x-10^...

The inverse of the function `y =(10^x-10^(-x))/(10^x +10^(-x))+1 ` is

A

`y= log_(10) (x )/(2-x)`

B

` y=1/2 log_(10) (x/(2-x))`

C

`y=1/2 log_(10) (x)/(1-x)`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To find the inverse of the function \( y = \frac{10^x - 10^{-x}}{10^x + 10^{-x}} + 1 \), we can follow these steps: ### Step 1: Rewrite the function Let \( y = \frac{10^x - 10^{-x}}{10^x + 10^{-x}} + 1 \). ### Step 2: Isolate the fraction Subtract 1 from both sides: \[ y - 1 = \frac{10^x - 10^{-x}}{10^x + 10^{-x}} \] ### Step 3: Apply the cross-multiplication Cross-multiply to eliminate the fraction: \[ (y - 1)(10^x + 10^{-x}) = 10^x - 10^{-x} \] ### Step 4: Expand the left side Expanding gives: \[ (y - 1)10^x + (y - 1)10^{-x} = 10^x - 10^{-x} \] ### Step 5: Rearrange the equation Rearranging terms, we have: \[ (y - 1)10^x - 10^x = - (y - 1)10^{-x} - 10^{-x} \] This simplifies to: \[ (y - 2)10^x = -(y + 1)10^{-x} \] ### Step 6: Multiply both sides by \( 10^x \) To eliminate \( 10^{-x} \), multiply both sides by \( 10^x \): \[ (y - 2)(10^x)^2 = -(y + 1) \] ### Step 7: Rearrange to form a quadratic equation This gives us: \[ (y - 2)(10^x)^2 + (y + 1) = 0 \] ### Step 8: Solve for \( 10^x \) Let \( z = 10^x \). The equation becomes: \[ (y - 2)z^2 + (y + 1) = 0 \] This is a quadratic equation in \( z \). ### Step 9: Use the quadratic formula Using the quadratic formula \( z = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \): - Here, \( a = (y - 2) \), \( b = 0 \), and \( c = (y + 1) \). \[ z = \frac{-0 \pm \sqrt{0^2 - 4(y - 2)(y + 1)}}{2(y - 2)} \] This simplifies to: \[ z = \frac{\sqrt{-4(y - 2)(y + 1)}}{2(y - 2)} = \frac{\sqrt{4(2 - y)(y + 1)}}{2(y - 2)} = \frac{\sqrt{(2 - y)(y + 1)}}{y - 2} \] ### Step 10: Take logarithm to solve for \( x \) Since \( z = 10^x \), we have: \[ 10^x = \frac{\sqrt{(2 - y)(y + 1)}}{y - 2} \] Taking logarithm base 10: \[ x = \log_{10}\left(\frac{\sqrt{(2 - y)(y + 1)}}{y - 2}\right) \] ### Step 11: Substitute \( y \) with \( x \) to find the inverse To express the inverse function, replace \( y \) with \( x \): \[ f^{-1}(x) = \log_{10}\left(\frac{\sqrt{(2 - x)(x + 1)}}{x - 2}\right) \] ### Final Result Thus, the inverse of the function is: \[ f^{-1}(x) = \log_{10}\left(\frac{\sqrt{(2 - x)(x + 1)}}{x - 2}\right) \]
Promotional Banner

Topper's Solved these Questions

  • FUNCTIONS

    ML KHANNA|Exercise PROBLEM SET (2) |40 Videos
  • FUNCTIONS

    ML KHANNA|Exercise PROBLEM SET (3) |71 Videos
  • EXPONENTIAL AND LOGARITHMIC SERIES

    ML KHANNA|Exercise Problem Set (2) (Self Assessment Test)|8 Videos
  • HEIGHTS AND DISTANCES

    ML KHANNA|Exercise Problem Set (3) FILL IN THE BLANKS|9 Videos

Similar Questions

Explore conceptually related problems

The inverse of the function (10^(x)-10^(-x))/(10^(x)+10^(-x)) is

Find the inverse of the function : y=(10^(x)-10^(-x))/(10^(x)+10^(-x))+1

Computer the inverse of the function : y = (10^(x) - 1)/(10^(x) + 1)

The inverse of f(x)=(10^(x)-10^(-x))/(10^(x)+10^(-x)) is A). (1)/(2)log_(10)((1+x)/(1-x)) , B). log_(10)(2-x) , C). (1)/(2)log_(10)(2-1) , D). (1)/(4)log_(10)((2x)/(2-x))

The inverse of f(x)=(10^(x)-10^(-x))/(10^(x)+10^(-x))=

Find domain of the function 10^(x)+10^(y)=10

The domain of the function f(x)=x^((1)/(log_(10)x)) is

The domain of the function f(x)=x^((1)/(log_(10)x)) is

If f:R rarr(-1,1) defined by f(x)=(10^(x)-10^(-x))/(10^(x)+10^(-x)) is invertible,find f^(-1)