Home
Class 12
MATHS
The inverse of the function f(x) = loga...

The inverse of the function ` f(x) = log_a ( x+ sqrt(x^2 +1)) (a ge 0 , a ne 1)` is

A

`1/2 (a^x -a^(-x))`

B

not defined for all x

C

defined for xgt0

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To find the inverse of the function \( f(x) = \log_a (x + \sqrt{x^2 + 1}) \) where \( a \geq 0 \) and \( a \neq 1 \), we will follow these steps: ### Step 1: Set the function equal to \( y \) We start by letting \( y = f(x) \): \[ y = \log_a (x + \sqrt{x^2 + 1}) \] ### Step 2: Rewrite the logarithmic equation in exponential form To eliminate the logarithm, we rewrite the equation in its exponential form: \[ x + \sqrt{x^2 + 1} = a^y \] ### Step 3: Isolate the square root Next, we isolate the square root term: \[ \sqrt{x^2 + 1} = a^y - x \] ### Step 4: Square both sides Now, we square both sides to eliminate the square root: \[ x^2 + 1 = (a^y - x)^2 \] ### Step 5: Expand the right-hand side Expanding the right side gives: \[ x^2 + 1 = a^{2y} - 2a^y x + x^2 \] ### Step 6: Simplify the equation We can simplify this by canceling \( x^2 \) from both sides: \[ 1 = a^{2y} - 2a^y x \] ### Step 7: Rearrange to solve for \( x \) Rearranging gives: \[ 2a^y x = a^{2y} - 1 \] \[ x = \frac{a^{2y} - 1}{2a^y} \] ### Step 8: Express \( x \) in terms of \( y \) Thus, we have expressed \( x \) in terms of \( y \): \[ x = \frac{1}{2} \left( a^y - a^{-y} \right) \] ### Step 9: Write the inverse function Since we want the inverse function \( f^{-1}(x) \), we replace \( y \) with \( x \): \[ f^{-1}(x) = \frac{1}{2} \left( a^x - a^{-x} \right) \] ### Final Answer The inverse of the function \( f(x) = \log_a (x + \sqrt{x^2 + 1}) \) is: \[ f^{-1}(x) = \frac{1}{2} \left( a^x - a^{-x} \right) \] ---
Promotional Banner

Topper's Solved these Questions

  • FUNCTIONS

    ML KHANNA|Exercise PROBLEM SET (2) |40 Videos
  • FUNCTIONS

    ML KHANNA|Exercise PROBLEM SET (3) |71 Videos
  • EXPONENTIAL AND LOGARITHMIC SERIES

    ML KHANNA|Exercise Problem Set (2) (Self Assessment Test)|8 Videos
  • HEIGHTS AND DISTANCES

    ML KHANNA|Exercise Problem Set (3) FILL IN THE BLANKS|9 Videos

Similar Questions

Explore conceptually related problems

The inverse of the functions f(x)=log_(2)(x+sqrt(x^(2)+1)) is

Computer the inverse of the function : f(x) = (x + sqrt(x^(2) + 1))

The function f(x) = sin| log (x + sqrt(x^2 + 1)) | is :

Find the inverse of the function y=log_(a) (x+sqrt(x^(2)+1)), (a gt 0, a ne 1)

The function f(x) = sec[log(x + sqrt(1+x^2))] is

Compute the inverse of the functions: (a) f(x)=In(x+sqrt(x² +1))