Home
Class 12
MATHS
If f (x) = sin x+cos x, g(x)= x^2 - 1, t...

If `f (x) = sin x+cos x, g(x)= x^2 - 1,` then gif (x)) is invertible in domain

A

`[(-pi)/(2) ,0]`

B

` [-(pi)/(4),(pi)/(4)]`

C

`[-(pi)/(2),pi]`

D

`(0,pi)`

Text Solution

AI Generated Solution

The correct Answer is:
To determine if the function \( g(f(x)) \) is invertible in a given domain, we need to follow these steps: ### Step 1: Define the functions We have: - \( f(x) = \sin x + \cos x \) - \( g(x) = x^2 - 1 \) ### Step 2: Find the composition \( g(f(x)) \) To find \( g(f(x)) \), we substitute \( f(x) \) into \( g(x) \): \[ g(f(x)) = g(\sin x + \cos x) = (\sin x + \cos x)^2 - 1 \] ### Step 3: Simplify \( g(f(x)) \) Now, we simplify \( g(f(x)) \): \[ g(f(x)) = (\sin x + \cos x)^2 - 1 \] Using the identity \( (\sin x + \cos x)^2 = \sin^2 x + \cos^2 x + 2\sin x \cos x \) and knowing that \( \sin^2 x + \cos^2 x = 1 \): \[ g(f(x)) = 1 + 2\sin x \cos x - 1 = 2\sin x \cos x \] Using the double angle identity, we can express this as: \[ g(f(x)) = \sin(2x) \] ### Step 4: Determine the intervals for invertibility To check if \( g(f(x)) = \sin(2x) \) is invertible, we need to find intervals where it is one-to-one. The sine function is one-to-one in the interval \( \left[-\frac{\pi}{2}, \frac{\pi}{2}\right] \) for \( 2x \), which corresponds to \( x \) in the interval \( \left[-\frac{\pi}{4}, \frac{\pi}{4}\right] \). ### Step 5: Conclusion Thus, \( g(f(x)) \) is invertible in the interval \( \left[-\frac{\pi}{4}, \frac{\pi}{4}\right] \).
Promotional Banner

Topper's Solved these Questions

  • FUNCTIONS

    ML KHANNA|Exercise PROBLEM SET (2) |40 Videos
  • FUNCTIONS

    ML KHANNA|Exercise PROBLEM SET (3) |71 Videos
  • EXPONENTIAL AND LOGARITHMIC SERIES

    ML KHANNA|Exercise Problem Set (2) (Self Assessment Test)|8 Videos
  • HEIGHTS AND DISTANCES

    ML KHANNA|Exercise Problem Set (3) FILL IN THE BLANKS|9 Videos

Similar Questions

Explore conceptually related problems

If f(x)=sinx+cosx, g(x)= x^(2)-1 , then g{f(x)} is invertible in the domain

If f(x)=sin x+cos x and g(x)=x^(2)-1 then g(f(x)) is invertible in the domain.

If int(x+sin x)/(1+cos x)dx=f(x)tan g(x)+C , then, f(x)=

If f(x) = Sin^-1 x and g(x)=(x^2-x-2)/(2x^2-x-6) then domain of fog(x) is

f(x)=sin^(-1)(sin x), g(x)=cos^(-1)(cos x) , then :

If f(x)=sqrt(3|x|-x-2) and g(x)=sin x then domain of (fog)(x) is

If the function f(x) = ( cos ( sin x ) - cos x )/( x^(4)) is continuous at each point in its domain and f(0) = ( 1)/( K ) , then k is "_______________" .

Suppose f, g, and h be three real valued function defined on R. Let f(x) = 2x + |x|, g(x) = (1)/(3)(2x-|x|) and h(x) = f(g(x)) The domain of definition of the function l (x) = sin^(-1) ( f(x) - g (x) ) is equal to

If f(x)=3 cos x and g(x)=sin^(2)x , the evaluate: (f+g)((pi)/(2))

For all x in R, let f(x)=sin^(4)x+cos^(4)x and g(x)=sin^(6)x+cos^(6)x, then (3f(x)-2g(x)) is equal to