Home
Class 12
MATHS
If the function f :[1,oo) to [1,oo) is ...

If the function f :`[1,oo) to [1,oo)` is defined by `f (x) = 2^(x (x-1)`, then `f^(-1)` (x) is

A

`(1/2)^(x(x-1))`

B

`1/2 {1 +sqrt(1 +4 log_2 x)}`

C

`1/2 {1 - sqrt(1+ 4 log_2 x)}`

D

Not defined

Text Solution

AI Generated Solution

The correct Answer is:
To find the inverse of the function \( f(x) = 2^{x(x-1)} \) defined on the interval \([1, \infty)\), we will follow these steps: ### Step-by-Step Solution 1. **Set the function equal to \( y \)**: \[ y = f(x) = 2^{x(x-1)} \] 2. **Take the logarithm of both sides**: \[ \log_2(y) = x(x-1) \] 3. **Rearrange the equation**: \[ x^2 - x - \log_2(y) = 0 \] This is a quadratic equation in terms of \( x \). 4. **Use the quadratic formula to solve for \( x \)**: The quadratic formula is given by: \[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \] Here, \( a = 1 \), \( b = -1 \), and \( c = -\log_2(y) \). Substituting these values into the formula gives: \[ x = \frac{1 \pm \sqrt{(-1)^2 - 4 \cdot 1 \cdot (-\log_2(y))}}{2 \cdot 1} \] Simplifying this: \[ x = \frac{1 \pm \sqrt{1 + 4\log_2(y)}}{2} \] 5. **Determine the correct sign**: Since \( f(x) \) is increasing on \([1, \infty)\), we take the positive root: \[ x = \frac{1 + \sqrt{1 + 4\log_2(y)}}{2} \] 6. **Replace \( y \) with \( x \) to express the inverse function**: Thus, the inverse function \( f^{-1}(x) \) is: \[ f^{-1}(x) = \frac{1 + \sqrt{1 + 4\log_2(x)}}{2} \] ### Final Answer \[ f^{-1}(x) = \frac{1 + \sqrt{1 + 4\log_2(x)}}{2} \]
Promotional Banner

Topper's Solved these Questions

  • FUNCTIONS

    ML KHANNA|Exercise PROBLEM SET (2) |40 Videos
  • FUNCTIONS

    ML KHANNA|Exercise PROBLEM SET (3) |71 Videos
  • EXPONENTIAL AND LOGARITHMIC SERIES

    ML KHANNA|Exercise Problem Set (2) (Self Assessment Test)|8 Videos
  • HEIGHTS AND DISTANCES

    ML KHANNA|Exercise Problem Set (3) FILL IN THE BLANKS|9 Videos

Similar Questions

Explore conceptually related problems

If the function f:[1,oo)to[1,oo) is defined by f(x)=2^(x(x-1)) then f^(-1) is

If the function, f:[1,oo]to [1,oo] is defined by f(x)=3^(x(x-1)) , then f^(-1)(x) is

If the function f:[1,oo)->[1,oo) is defined by f(x)=2^(x(x-1)), then f^-1(x) is (A) (1/2)^(x(x-1)) (B) 1/2 sqrt(1+4log_2x) (C) 1/2(1-sqrt(1+4log_2x)) (D) not defined

The function f : [0,oo)to[0,oo) defined by f(x)=(2x)/(1+2x) is

If f:[1,oo)rarr[1,oo) is defined as f(x)=3^(x(x-2)) then f^(-1)(x) is equal to

If the function f:[2,oo)rarr[-1,oo) is defined by f(x)=x^(2)-4x+3 then f^(-1)(x)=

Let f:[4,oo)to[4,oo) be defined by f(x)=5^(x^((x-4))) .Then f^(-1)(x) is

If f : [1, oo) rarr [2, oo) is given by f(x) = x + (1)/(x) then f^(-1) (x) equals: