Home
Class 12
MATHS
Fundamental period of the function f (x)...

Fundamental period of the function `f (x) = sin^4 x+ cos^4 x=`

A

`pi`

B

` 2pi`

C

` pi//2`

D

None

Text Solution

AI Generated Solution

The correct Answer is:
To find the fundamental period of the function \( f(x) = \sin^4 x + \cos^4 x \), we can follow these steps: ### Step 1: Rewrite the Function We start with the function: \[ f(x) = \sin^4 x + \cos^4 x \] We can use the identity \( a^2 + b^2 = (a + b)^2 - 2ab \) to rewrite this. Let \( a = \sin^2 x \) and \( b = \cos^2 x \): \[ f(x) = (\sin^2 x + \cos^2 x)^2 - 2\sin^2 x \cos^2 x \] Since \( \sin^2 x + \cos^2 x = 1 \): \[ f(x) = 1 - 2\sin^2 x \cos^2 x \] ### Step 2: Use the Double Angle Identity We can express \( \sin^2 x \cos^2 x \) in terms of \( \sin 2x \): \[ \sin^2 x \cos^2 x = \frac{1}{4} \sin^2 2x \] Thus, \[ f(x) = 1 - \frac{1}{2} \sin^2 2x \] ### Step 3: Rewrite \( \sin^2 2x \) Using the identity \( \sin^2 \theta = \frac{1 - \cos 2\theta}{2} \): \[ \sin^2 2x = \frac{1 - \cos 4x}{2} \] Substituting this back into our function: \[ f(x) = 1 - \frac{1}{2} \cdot \frac{1 - \cos 4x}{2} \] This simplifies to: \[ f(x) = 1 - \frac{1}{4} + \frac{1}{4} \cos 4x \] \[ f(x) = \frac{3}{4} + \frac{1}{4} \cos 4x \] ### Step 4: Determine the Period The function \( f(x) = \frac{3}{4} + \frac{1}{4} \cos 4x \) consists of a constant term and a cosine term. The period of the cosine function \( \cos kx \) is given by: \[ \text{Period} = \frac{2\pi}{k} \] For \( \cos 4x \), \( k = 4 \): \[ \text{Period of } \cos 4x = \frac{2\pi}{4} = \frac{\pi}{2} \] ### Conclusion Thus, the fundamental period of the function \( f(x) = \sin^4 x + \cos^4 x \) is: \[ \frac{\pi}{2} \]
Promotional Banner

Topper's Solved these Questions

  • FUNCTIONS

    ML KHANNA|Exercise PROBLEM SET (2) |40 Videos
  • FUNCTIONS

    ML KHANNA|Exercise PROBLEM SET (3) |71 Videos
  • EXPONENTIAL AND LOGARITHMIC SERIES

    ML KHANNA|Exercise Problem Set (2) (Self Assessment Test)|8 Videos
  • HEIGHTS AND DISTANCES

    ML KHANNA|Exercise Problem Set (3) FILL IN THE BLANKS|9 Videos

Similar Questions

Explore conceptually related problems

Fundamental period of the function f(x) = cos (sinx) + cos(cosx) is :

If fundamental period of the functions f(x)=sin^(2)x+cos^(4)x and g(x)=cos(sin2x)+cos(cos2x) are lambda_(1) and lambda_(2) respectively then (lambda_(1))/(lambda_(2))=

Find the fundamental period of the following function: f(x)=sin 3x+cos^(2)x+|tanx|

The period of the function f(x)=|sin x|+|cos x| is

The fundamental period of the function f(x)=|sin2x|+|cos2x| is

The period of the function f(x)=sin^(4)3x+cos^(4)3x , is

The period of the function f(x)=|sin 2x|+|cos 8x| is