Home
Class 12
MATHS
The function f (x) = cos x is periodic w...

The function f (x) = cos x is periodic with period

A

`2 pi`

B

` pi`

C

` (pi)/(2)`

D

` (pi)/(4)`

Text Solution

AI Generated Solution

The correct Answer is:
To determine the period of the function \( f(x) = \cos x \), we need to check the condition for periodicity. A function \( f(x) \) is periodic with period \( T \) if: \[ f(x + T) = f(x) \quad \text{for all } x \] ### Step 1: Identify the function The function we are analyzing is: \[ f(x) = \cos x \] ### Step 2: Test the options for periodicity We need to check the given options to see which one satisfies the periodic condition \( f(x + T) = f(x) \). #### Option 1: \( T = \frac{\pi}{4} \) Calculate \( f\left(\frac{\pi}{4} + x\right) \): \[ f\left(\frac{\pi}{4} + x\right) = \cos\left(\frac{\pi}{4} + x\right) \] Using the cosine addition formula: \[ \cos\left(\frac{\pi}{4} + x\right) = \cos\frac{\pi}{4} \cos x - \sin\frac{\pi}{4} \sin x = \frac{\sqrt{2}}{2} \cos x - \frac{\sqrt{2}}{2} \sin x \] This is not equal to \( \cos x \), so \( T = \frac{\pi}{4} \) is not a period. #### Option 2: \( T = \frac{\pi}{2} \) Calculate \( f\left(\frac{\pi}{2} + x\right) \): \[ f\left(\frac{\pi}{2} + x\right) = \cos\left(\frac{\pi}{2} + x\right) = -\sin x \] This is not equal to \( \cos x \), so \( T = \frac{\pi}{2} \) is not a period. #### Option 3: \( T = \pi \) Calculate \( f(\pi + x) \): \[ f(\pi + x) = \cos(\pi + x) = -\cos x \] This is not equal to \( \cos x \), so \( T = \pi \) is not a period. #### Option 4: \( T = 2\pi \) Calculate \( f(2\pi + x) \): \[ f(2\pi + x) = \cos(2\pi + x) = \cos x \] This is equal to \( \cos x \), so \( T = 2\pi \) is a period. ### Conclusion The period of the function \( f(x) = \cos x \) is: \[ \boxed{2\pi} \]
Promotional Banner

Topper's Solved these Questions

  • FUNCTIONS

    ML KHANNA|Exercise PROBLEM SET (2) |40 Videos
  • FUNCTIONS

    ML KHANNA|Exercise PROBLEM SET (3) |71 Videos
  • EXPONENTIAL AND LOGARITHMIC SERIES

    ML KHANNA|Exercise Problem Set (2) (Self Assessment Test)|8 Videos
  • HEIGHTS AND DISTANCES

    ML KHANNA|Exercise Problem Set (3) FILL IN THE BLANKS|9 Videos

Similar Questions

Explore conceptually related problems

The function f(x)=|cos| is periodic with period

The function f(x)=x-[x] is a periodic with period.

If f (x) is periodic function with period T, then the function f (ax+b) where a gt 0, is periodic with period

Statement-1: The period of the function f(x)=cos[2pi]^(2)x+cos[-2pi^(2)]x+[x] is pi, [x] being greatest integer function and [x] is a fractional part of x, is pi . Statement-2: The cosine function is periodic with period 2pi

Discuss whether the function f(x)=sin(cos x+x) is period or not.If yes, then what is its period?

The function f(x)=|sin4x|+|cos2x| is a periodic function with period

If f(x) is a periodic function with peirodic function with period lambda then f(lambda x + u) where mu is any constant is periodic with period (T)/(a) .