Home
Class 12
MATHS
the period of f(x) = 1/2 {(|sinx|)/(...

the period of ` f(x) = 1/2 {(|sinx|)/(cos x)+(|cos x|)/(sin x)}` is

A

` (pi)/(2)`

B

` pi`

C

` 2 pi`

D

None

Text Solution

AI Generated Solution

The correct Answer is:
To find the period of the function \( f(x) = \frac{1}{2} \left( \frac{|\sin x|}{\cos x} + \frac{|\cos x|}{\sin x} \right) \), we need to determine the smallest positive value \( T \) such that \( f(x + T) = f(x) \) for all \( x \). ### Step 1: Check the period for \( T = \pi \) Let's first check if \( T = \pi \) is a period of the function. 1. Compute \( f(x + \pi) \): \[ f(x + \pi) = \frac{1}{2} \left( \frac{|\sin(x + \pi)|}{\cos(x + \pi)} + \frac{|\cos(x + \pi)|}{\sin(x + \pi)} \right) \] Using the properties of sine and cosine: - \( \sin(x + \pi) = -\sin x \) - \( \cos(x + \pi) = -\cos x \) Therefore: \[ f(x + \pi) = \frac{1}{2} \left( \frac{|\sin x|}{-\cos x} + \frac{|\cos x|}{-\sin x} \right) = \frac{1}{2} \left( -\frac{|\sin x|}{\cos x} - \frac{|\cos x|}{\sin x} \right) \] Since the absolute values make the terms positive: \[ f(x + \pi) = -\frac{1}{2} \left( \frac{|\sin x|}{\cos x} + \frac{|\cos x|}{\sin x} \right) = -f(x) \] Thus, \( f(x + \pi) \neq f(x) \). Hence, \( T = \pi \) is not a period. ### Step 2: Check the period for \( T = 2\pi \) Now, let's check if \( T = 2\pi \) is a period of the function. 1. Compute \( f(x + 2\pi) \): \[ f(x + 2\pi) = \frac{1}{2} \left( \frac{|\sin(x + 2\pi)|}{\cos(x + 2\pi)} + \frac{|\cos(x + 2\pi)|}{\sin(x + 2\pi)} \right) \] Using the properties of sine and cosine: - \( \sin(x + 2\pi) = \sin x \) - \( \cos(x + 2\pi) = \cos x \) Therefore: \[ f(x + 2\pi) = \frac{1}{2} \left( \frac{|\sin x|}{\cos x} + \frac{|\cos x|}{\sin x} \right) = f(x) \] Thus, \( f(x + 2\pi) = f(x) \). Hence, \( T = 2\pi \) is a period of the function. ### Conclusion The period of the function \( f(x) = \frac{1}{2} \left( \frac{|\sin x|}{\cos x} + \frac{|\cos x|}{\sin x} \right) \) is \( 2\pi \). ---
Promotional Banner

Topper's Solved these Questions

  • FUNCTIONS

    ML KHANNA|Exercise PROBLEM SET (2) |40 Videos
  • FUNCTIONS

    ML KHANNA|Exercise PROBLEM SET (3) |71 Videos
  • EXPONENTIAL AND LOGARITHMIC SERIES

    ML KHANNA|Exercise Problem Set (2) (Self Assessment Test)|8 Videos
  • HEIGHTS AND DISTANCES

    ML KHANNA|Exercise Problem Set (3) FILL IN THE BLANKS|9 Videos

Similar Questions

Explore conceptually related problems

The period of f(x)=(1)/(2){(| sinx|)/(cos x)+(|cos|)/(sinx)} , is

find the period of f(x)={(|sin x|)/(cos x)+(|cos x|)/(sin x)}

The period of the function f(x)=(1)/(2)((|sin x|)/(cos x)+(sin x)/(|cos x|)) is

Period of f(x)=cos(|sin x|-|cos x|) is

The minimum period of the function f(x)=(|sin x|+|cos x|)/(|sin x-cos x|) is

The period of the function f(x)=|sin 2x|+|cos 8x| is

Find the period of the function f(x) = (sin x + sin 3x)/(cos x + cos 3x)