Home
Class 12
MATHS
Determine whether the function sin { lo...

Determine whether the function ` sin { log x + sqrt((x^2 +1))}` is

A

even

B

odd

C

constant

D

none

Text Solution

AI Generated Solution

The correct Answer is:
To determine whether the function \( f(x) = \sin(\log x + \sqrt{x^2 + 1}) \) is even, odd, or neither, we will follow these steps: ### Step 1: Find \( f(-x) \) We start by substituting \(-x\) into the function: \[ f(-x) = \sin(\log(-x) + \sqrt{(-x)^2 + 1}) \] ### Step 2: Simplify \( f(-x) \) Now, simplify the expression: 1. The term \(\sqrt{(-x)^2 + 1}\) simplifies to \(\sqrt{x^2 + 1}\) because \((-x)^2 = x^2\). 2. The term \(\log(-x)\) is not defined for \(x > 0\). However, for \(x < 0\), we can write \(\log(-x) = \log x + \log(-1) = \log x + i\pi\) (in the complex domain). But we will focus on the real case. Thus, we have: \[ f(-x) = \sin(\log(-x) + \sqrt{x^2 + 1}) = \sin(\log(-x) + \sqrt{x^2 + 1}) \] ### Step 3: Analyze the function Now we need to check if \( f(-x) = f(x) \) or \( f(-x) = -f(x) \). 1. For \( f(x) \): \[ f(x) = \sin(\log x + \sqrt{x^2 + 1}) \] 2. For \( f(-x) \): \[ f(-x) = \sin(\log(-x) + \sqrt{x^2 + 1}) = \sin(\log x + i\pi + \sqrt{x^2 + 1}) \] ### Step 4: Determine if the function is even or odd From the above, we can see that: - \( f(-x) \) does not equal \( f(x) \), so it is not even. - To check if it is odd, we need to see if \( f(-x) = -f(x) \). Using the property of sine: \[ \sin(a + b) = \sin a \cos b + \cos a \sin b \] Thus, we can see that \( f(-x) \) does not simplify to \(-f(x)\) either. ### Conclusion Since \( f(-x) \neq f(x) \) and \( f(-x) \neq -f(x) \), we conclude that the function \( f(x) = \sin(\log x + \sqrt{x^2 + 1}) \) is neither even nor odd.
Promotional Banner

Topper's Solved these Questions

  • FUNCTIONS

    ML KHANNA|Exercise PROBLEM SET (2) |40 Videos
  • FUNCTIONS

    ML KHANNA|Exercise PROBLEM SET (3) |71 Videos
  • EXPONENTIAL AND LOGARITHMIC SERIES

    ML KHANNA|Exercise Problem Set (2) (Self Assessment Test)|8 Videos
  • HEIGHTS AND DISTANCES

    ML KHANNA|Exercise Problem Set (3) FILL IN THE BLANKS|9 Videos

Similar Questions

Explore conceptually related problems

The function f(x) = sin| log (x + sqrt(x^2 + 1)) | is :

log sin sqrt(x^(2)+1)

The function f(x) = sec[log(x + sqrt(1+x^2))] is

The function f(x)=cos(log(x+sqrt(x^(2)+1))) is :

compute the inverse of the function {log(x+sqrt(x^(2)+1))}=

If f(x)=x.log((1-x)/(1+x)), determine whether the function f is even or odd or neither.