Home
Class 12
MATHS
Classify the following functions for bei...

Classify the following functions for being even or odd:
` sin [ log (x + sqrt(x^2 +1))]`

Text Solution

AI Generated Solution

The correct Answer is:
To classify the function \( f(x) = \sin \left( \log \left( x + \sqrt{x^2 + 1} \right) \right) \) as even or odd, we will follow these steps: ### Step 1: Define the function Let \( f(x) = \sin \left( \log \left( x + \sqrt{x^2 + 1} \right) \right) \). ### Step 2: Find \( f(-x) \) To check if the function is even or odd, we need to compute \( f(-x) \): \[ f(-x) = \sin \left( \log \left( -x + \sqrt{(-x)^2 + 1} \right) \right) \] Since \( (-x)^2 = x^2 \), we can simplify: \[ f(-x) = \sin \left( \log \left( -x + \sqrt{x^2 + 1} \right) \right) \] ### Step 3: Simplify \( f(-x) \) Next, we simplify \( \log \left( -x + \sqrt{x^2 + 1} \right) \). We can use the property of logarithms: \[ \log(a) - \log(b) = \log\left(\frac{a}{b}\right) \] We know that: \[ -x + \sqrt{x^2 + 1} = \frac{1}{x + \sqrt{x^2 + 1}} \] Thus: \[ \log \left( -x + \sqrt{x^2 + 1} \right) = \log \left( \frac{1}{x + \sqrt{x^2 + 1}} \right) = -\log \left( x + \sqrt{x^2 + 1} \right) \] So we have: \[ f(-x) = \sin \left( -\log \left( x + \sqrt{x^2 + 1} \right) \right) \] ### Step 4: Use the sine property Using the property of sine, \( \sin(-\theta) = -\sin(\theta) \): \[ f(-x) = -\sin \left( \log \left( x + \sqrt{x^2 + 1} \right) \right) = -f(x) \] ### Step 5: Conclusion Since \( f(-x) = -f(x) \), the function \( f(x) \) is classified as an **odd function**. ### Summary The function \( f(x) = \sin \left( \log \left( x + \sqrt{x^2 + 1} \right) \right) \) is an odd function. ---
Promotional Banner

Topper's Solved these Questions

  • FUNCTIONS

    ML KHANNA|Exercise PROBLEM SET (2) |40 Videos
  • FUNCTIONS

    ML KHANNA|Exercise PROBLEM SET (3) |71 Videos
  • EXPONENTIAL AND LOGARITHMIC SERIES

    ML KHANNA|Exercise Problem Set (2) (Self Assessment Test)|8 Videos
  • HEIGHTS AND DISTANCES

    ML KHANNA|Exercise Problem Set (3) FILL IN THE BLANKS|9 Videos

Similar Questions

Explore conceptually related problems

Classify the following functions for being odd or even: f(x)=x^2 -|x|

Classify the following functions for being odd or even: log {(x^4 +x^2 +1)/((x^2 +x+1))}

Classify the following functions for being odd or even: (sin^4 x+ cos^4 x)/(x+x^2 tan x)

Classify the following functions for being odd or even: f(x) = sqrt(1+x+x^2)- sqrt(1-x+x^2)

Classify the following functions for being odd or even: f(x) =x ((a^x +1)/(a^x -1))

Find whether the following functions are even or odd or none f(x)=log(x+sqrt(1+x^(2)))

Classify the following functions for being odd or even: [(f(x)-f(-x))/(g(x) +g (-x))]^n