Home
Class 12
MATHS
If b(xy)=-(3)/(2),b(yx)=-(1)/(6), then v...

If `b_(xy)=-(3)/(2),b_(yx)=-(1)/(6)`, then value of r is ……………..

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of the correlation coefficient \( r \) given the regression coefficients \( b_{xy} \) and \( b_{yx} \), we can follow these steps: ### Step 1: Write down the given values We have: - \( b_{xy} = -\frac{3}{2} \) - \( b_{yx} = -\frac{1}{6} \) ### Step 2: Use the formula for the correlation coefficient The correlation coefficient \( r \) is related to the regression coefficients by the formula: \[ r = \sqrt{b_{xy} \cdot b_{yx}} \] ### Step 3: Substitute the values into the formula Substituting the given values into the formula: \[ r = \sqrt{\left(-\frac{3}{2}\right) \cdot \left(-\frac{1}{6}\right)} \] ### Step 4: Simplify the expression inside the square root Calculating the product: \[ -\frac{3}{2} \cdot -\frac{1}{6} = \frac{3}{12} = \frac{1}{4} \] ### Step 5: Take the square root Now, we take the square root: \[ r = \sqrt{\frac{1}{4}} = \frac{1}{2} \] ### Step 6: Determine the sign of \( r \) Since both regression coefficients \( b_{xy} \) and \( b_{yx} \) are negative, the correlation coefficient \( r \) will also be negative: \[ r = -\frac{1}{2} \] ### Final Answer Thus, the value of \( r \) is: \[ \boxed{-\frac{1}{2}} \] ---
Promotional Banner

Topper's Solved these Questions

  • CORRELATION AND REGRESSION

    ML KHANNA|Exercise PROBLEM SET (1) (TRUE AND FALSE)|9 Videos
  • CORRELATION AND REGRESSION

    ML KHANNA|Exercise SELF ASSESSMENT TEST |10 Videos
  • CORRELATION AND REGRESSION

    ML KHANNA|Exercise PROBLEM SET (1) TRUE/FALSE|6 Videos
  • CONCEPTS OF SET THEORY

    ML KHANNA|Exercise Self Assessment Test|13 Videos
  • DEFINITE INTEGRAL

    ML KHANNA|Exercise Miscellaneous Questions (Assertion/Reason)|1 Videos

Similar Questions

Explore conceptually related problems

If 43C_(r-6)=43C_(3r+1) then the value of r is 12 b.8 c.6 d.10 e.14

If {[(5,1,4),(7,6,2),(1,3,5)][(1,6,-7),(6,2,4),(-7,4,3)][(5,7,1),(1,6,3),(4,2,5)]}^(2020)=[(a_(1),a_(2),a_(3)),(b_(1),b_(2),b_(3)),(c_(1),c_(2),c_(3))] , then the value of 2|a_(2)-b_(1)|+3|a_(3)-c_(1)|+4|b_(3)-c_(2)| is equal to

For two variables x and y, the two regression coefficients are b_(yx)=-3//2 and b_(xy)=-1//6. The correlation coefficient between x and y is :

If B=[[2,4,1],[4,-6,3],[0,6,4]] then the value of |B| is

State True or False: If b_(yx)=1.5 and b_(xy)=1/3 then r = 1/2 . The given data is consistent.

If x:y=3:4land a:b=1:2, then the value of (2xa+yb)/(3yb-4xa) is (5)/(6) b.(6)/(7) c.(6)/(5) d.(7)/(6)

If A=[{:(2,3),(-1,-2):}] and B=sum_(r=1)^(10)A^r , then the value of det (B)is equal to

If a=(sqrt(3)+sqrt(2))^(-3) and b=(5-2sqrt(6))^(-(3)/(2)). then the value of (a+1)^(-1)+(b+1)^(-1) is

If a=(sqrt(3)+sqrt(2))^(-3) and b=(5-2sqrt(6))^(-(3)/(2)) then the value of (a+1)^(-1)+(b+1)^(-1) is

If A=[(1, 2,3),(4, 5, 6)] and B=[(1, 4),(2, 5), (3, 6)] , then the determinant value of BA is