Home
Class 12
MATHS
The coefficient of correlation for the f...

The coefficient of correlation for the following data will be approximately
`{:(x:,2,4,5,6,3,6,8,10),(y:,5,6,6,8,4,8,12,15):}`

A

90

B

96

C

`0.90`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To find the coefficient of correlation for the given data, we will follow these steps: ### Step 1: Organize the Data We have two sets of data: - \( x: 2, 4, 5, 6, 3, 6, 8, 10 \) - \( y: 5, 6, 6, 8, 4, 8, 12, 15 \) ### Step 2: Calculate Necessary Sums We need to calculate the following: - \( \sum x \) - \( \sum y \) - \( \sum xy \) - \( \sum x^2 \) - \( \sum y^2 \) Let's calculate these values step by step. #### Calculation of \( \sum x \): \[ \sum x = 2 + 4 + 5 + 6 + 3 + 6 + 8 + 10 = 44 \] #### Calculation of \( \sum y \): \[ \sum y = 5 + 6 + 6 + 8 + 4 + 8 + 12 + 15 = 64 \] #### Calculation of \( \sum xy \): \[ \sum xy = (2 \cdot 5) + (4 \cdot 6) + (5 \cdot 6) + (6 \cdot 8) + (3 \cdot 4) + (6 \cdot 8) + (8 \cdot 12) + (10 \cdot 15) \] \[ = 10 + 24 + 30 + 48 + 12 + 48 + 96 + 150 = 418 \] #### Calculation of \( \sum x^2 \): \[ \sum x^2 = 2^2 + 4^2 + 5^2 + 6^2 + 3^2 + 6^2 + 8^2 + 10^2 \] \[ = 4 + 16 + 25 + 36 + 9 + 36 + 64 + 100 = 290 \] #### Calculation of \( \sum y^2 \): \[ \sum y^2 = 5^2 + 6^2 + 6^2 + 8^2 + 4^2 + 8^2 + 12^2 + 15^2 \] \[ = 25 + 36 + 36 + 64 + 16 + 64 + 144 + 225 = 640 \] ### Step 3: Apply the Correlation Coefficient Formula The formula for the coefficient of correlation \( r \) is given by: \[ r = \frac{n \sum xy - \sum x \sum y}{\sqrt{n \sum x^2 - (\sum x)^2} \sqrt{n \sum y^2 - (\sum y)^2}} \] Where \( n \) is the number of pairs of data points. Here, \( n = 8 \). Substituting the values we calculated: \[ r = \frac{8 \cdot 418 - 44 \cdot 64}{\sqrt{8 \cdot 290 - 44^2} \sqrt{8 \cdot 640 - 64^2}} \] ### Step 4: Calculate Each Component 1. Calculate \( 8 \cdot 418 \): \[ 8 \cdot 418 = 3344 \] 2. Calculate \( 44 \cdot 64 \): \[ 44 \cdot 64 = 2816 \] 3. Calculate \( n \sum x^2 - (\sum x)^2 \): \[ 8 \cdot 290 - 44^2 = 2320 - 1936 = 384 \] 4. Calculate \( n \sum y^2 - (\sum y)^2 \): \[ 8 \cdot 640 - 64^2 = 5120 - 4096 = 1024 \] ### Step 5: Substitute and Simplify Now substituting back into the formula: \[ r = \frac{3344 - 2816}{\sqrt{384} \cdot \sqrt{1024}} \] \[ = \frac{528}{\sqrt{384} \cdot 32} \] Calculating \( \sqrt{384} \): \[ \sqrt{384} \approx 19.6 \] Thus: \[ r \approx \frac{528}{19.6 \cdot 32} \approx \frac{528}{627.2} \approx 0.842 \] ### Final Result The coefficient of correlation \( r \) is approximately \( 0.842 \).
Promotional Banner

Topper's Solved these Questions

  • CORRELATION AND REGRESSION

    ML KHANNA|Exercise PROBLEM SET (1) (TRUE AND FALSE)|9 Videos
  • CONCEPTS OF SET THEORY

    ML KHANNA|Exercise Self Assessment Test|13 Videos
  • DEFINITE INTEGRAL

    ML KHANNA|Exercise Miscellaneous Questions (Assertion/Reason)|1 Videos

Similar Questions

Explore conceptually related problems

If the mean of the following data is 5.5, then x = {:(x_(i),2,4,6,8),(f_(i)"",3,5,6,x):}

Find the quartile deviation of the following discrete series. {:(x,3,5,6,8,10,12),(f,7,2,3,4,5,6):}

Calculate mode from the following series : {:("Size",1,2,3,4,5,6,7,8,9,10,),("Frequency",8,6,10,12,20,12,5,3,2,4,):}

{:(4,12,11,5),(6,7,10,3),(8,9,10,7),(7,5,?,4):}

Find the median of the following series : {:("Size",2,3,4,5,6,7,8,9,10),("Frequency",2,3,8,10,12,16,10,8,6):}

The Median of the following discrete series is {:(x_(i),3,6,5,8,12,7),(f_(i)"",5,2,4,6,7,6):}

{:(5,7,8),(4,6,6),(2,3,?),(10,14,12):}

Find the mode of the following discrete series. {:(x,f," "x,f),(1,5," "5,12),(2,4," "6,3),(3,6," "7,9),(4,8," "8,10):}

Find the mean, variance and the standard deviation for the following data : 5,9,8,12,6,10,6,8