Home
Class 12
MATHS
For the data {:(x:,4,7,8,3,4),(y:,5,8,...

For the data
`{:(x:,4,7,8,3,4),(y:,5,8,6,3,5):}`
The Karl Pearson coefficient is

A

`(63)/(sqrt(94xx66))`

B

63

C

`(63)/(sqrt(94))`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To find the Karl Pearson coefficient of correlation (denoted as \( r \)) for the given data, we will follow these steps: ### Step 1: Organize the Data We have the following data points: - \( x: 4, 7, 8, 3, 4 \) - \( y: 5, 8, 6, 3, 5 \) Let's create a table to organize this data along with the calculations we need for \( x^2 \), \( y^2 \), and \( xy \). | \( x \) | \( y \) | \( x^2 \) | \( y^2 \) | \( xy \) | |---------|---------|-----------|-----------|----------| | 4 | 5 | 16 | 25 | 20 | | 7 | 8 | 49 | 64 | 56 | | 8 | 6 | 64 | 36 | 48 | | 3 | 3 | 9 | 9 | 9 | | 4 | 5 | 16 | 25 | 20 | | **Total** | | **154** | **159** | **153** | ### Step 2: Calculate Required Sums - \( n = 5 \) (the number of data points) - \( \Sigma x = 4 + 7 + 8 + 3 + 4 = 26 \) - \( \Sigma y = 5 + 8 + 6 + 3 + 5 = 27 \) - \( \Sigma x^2 = 16 + 49 + 64 + 9 + 16 = 154 \) - \( \Sigma y^2 = 25 + 64 + 36 + 9 + 25 = 159 \) - \( \Sigma xy = 20 + 56 + 48 + 9 + 20 = 153 \) ### Step 3: Use the Formula for Karl Pearson Coefficient The formula for the Karl Pearson coefficient \( r \) is given by: \[ r = \frac{n \Sigma xy - \Sigma x \Sigma y}{\sqrt{[n \Sigma x^2 - (\Sigma x)^2][n \Sigma y^2 - (\Sigma y)^2]}} \] ### Step 4: Substitute the Values Now we will substitute the calculated values into the formula: \[ r = \frac{5 \cdot 153 - 26 \cdot 27}{\sqrt{[5 \cdot 154 - 26^2][5 \cdot 159 - 27^2]}} \] Calculating each part: 1. \( n \Sigma xy = 5 \cdot 153 = 765 \) 2. \( \Sigma x \Sigma y = 26 \cdot 27 = 702 \) 3. \( n \Sigma x^2 = 5 \cdot 154 = 770 \) 4. \( (\Sigma x)^2 = 26^2 = 676 \) 5. \( n \Sigma y^2 = 5 \cdot 159 = 795 \) 6. \( (\Sigma y)^2 = 27^2 = 729 \) Now substituting these values: \[ r = \frac{765 - 702}{\sqrt{(770 - 676)(795 - 729)}} \] Calculating the differences: 1. \( 765 - 702 = 63 \) 2. \( 770 - 676 = 94 \) 3. \( 795 - 729 = 66 \) Now substituting back: \[ r = \frac{63}{\sqrt{94 \cdot 66}} \] Calculating \( 94 \cdot 66 = 6204 \): \[ r = \frac{63}{\sqrt{6204}} \approx \frac{63}{78.8} \approx 0.799 \] ### Final Result Thus, the Karl Pearson coefficient \( r \) is approximately \( 0.799 \).
Promotional Banner

Topper's Solved these Questions

  • CORRELATION AND REGRESSION

    ML KHANNA|Exercise PROBLEM SET (1) (TRUE AND FALSE)|9 Videos
  • CONCEPTS OF SET THEORY

    ML KHANNA|Exercise Self Assessment Test|13 Videos
  • DEFINITE INTEGRAL

    ML KHANNA|Exercise Miscellaneous Questions (Assertion/Reason)|1 Videos

Similar Questions

Explore conceptually related problems

Consider the following data : {:(x,5,7,8,4,6),(y,2,4,3,2,4):} What is the regression equation of y on x?

From the following data, determine Karl Pearson's coefficient of correlation between X and Y series for 15 pairs .

Median of the data 4,5,9,2,6,8,7 is 2

Consider the data 2,3,2,4,5,6 , 4, 2, 3, 3, 7 , 8 , 2,2 . The frequency of 2 is "_______"

The median of the data : 3, 4, 5, 6, 7, 3, 4 is

Find the mode from the following data : 5,8,4,5,5,8,4,7,8,5

If A=[{:(3,4),(5,6),(7,8):}] and B = [{:(3,5,7),(4,6,8):}] . Then which one of following is correct ?