Home
Class 12
PHYSICS
If vec A and vec B are two vectors satis...

If `vec A and vec B` are two vectors satisfying the relation `vec A cdot vec B = |vec A xx vec B|`. Then the value of `|vec A - vec B|` will be :

A

`sqrt(A^(2)+B^(2))`

B

`sqrt(A^(2)+B^(2)+sqrt(2)AB)`

C

`sqrt(A^(2)+B^(2)+2AB)`

D

`sqrt(A^(2)+B^(2)-sqrt(2)AB)`

Text Solution

AI Generated Solution

Promotional Banner

Topper's Solved these Questions

  • JEE MAINS 2021

    JEE MAINS PREVIOUS YEAR|Exercise PHYSICS (SECTION-B)|40 Videos
  • JEE MAINS 2021

    JEE MAINS PREVIOUS YEAR|Exercise PHYSICS (SECTION - A) |40 Videos
  • JEE MAINS 2020

    JEE MAINS PREVIOUS YEAR|Exercise PHYSICS|246 Videos
  • JEE MAINS 2022

    JEE MAINS PREVIOUS YEAR|Exercise PHYSICS (SECTION -B)|10 Videos

Similar Questions

Explore conceptually related problems

Vector vec x satisfying the relation vec A*vec x=c and vec B xxvec x=vec B is :

If | vec A| = 2, | vec B| =5 and | vec A xx vec B | =8 , din the value of (vec A. vec B0 .

If vec A.vec B= |vec A xx vec B|, find the value of angle between vec A and vec B .

If vec a, and vec b are unit vectors,then find the greatest value of |vec a+vec b|+|vec a-vec b|

Two vectors vec A and vec B are such that vec A + vec B = vec A- vec B , then

The vectors vec a and vec b are not perpendicular and vec c and vec d are two vectors satisfying : vec b""xxvec c""= vec b"" xxvec d"",vec a * vec d=0 . Then the vector vec d is equal to : (1) vec b-(( vec bdot vec c)/( vec adot vec d)) vec c (2) vec c+(( vec adot vec c)/( vec adot vec b)) vec b (3) vec b+(( vec bdot vec c)/( vec adot vec b)) vec c (4) vec c-(( vec adot vec c)/( vec adot vec b)) vec b

If vec a and vec b are unit vectors and vec c satisfies 2(vec a xxvec b)+vec c=vec b xxvec c then the maximum value of (vec a xxvec c)*vec b|_( is )

If vec a and vec b are two vectors such that (vec a+vec b)vec a-vec b=0 find the relation between the magnitudes of vec a and vec b

If vec(a) and vec(b) are two vectors then the value of (vec(a) + vec(b)) xx (vec(a) - vec(b)) is

The vectors vec A and vec B are such that |vec A + vec B | = |vec A - vec B| . The angle between the two vectors is