Home
Class 12
MATHS
Let a,b,c,d be in arithmetic progression...

Let a,b,c,d be in arithmetic progression with common difference `lambda`. If
`|(x+a-c,x+b,x+a),(x-1,x+c,x+b),(x-b+d,x+d,x+c)|=2,`
then value of `lambda^(2)` is equal to _______ .

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( \lambda^2 \) given that \( a, b, c, d \) are in arithmetic progression with a common difference \( \lambda \) and the determinant is equal to 2. Let's go through the solution step by step. ### Step 1: Understand the Arithmetic Progression Since \( a, b, c, d \) are in arithmetic progression with common difference \( \lambda \), we can express them as: - \( b = a + \lambda \) - \( c = a + 2\lambda \) - \( d = a + 3\lambda \) ### Step 2: Rewrite the Determinant The determinant given in the problem is: \[ \begin{vmatrix} x + a - c & x + b & x + a \\ x - 1 & x + c & x + b \\ x - b + d & x + d & x + c \end{vmatrix} \] Substituting \( c = a + 2\lambda \) and \( d = a + 3\lambda \): - \( a - c = a - (a + 2\lambda) = -2\lambda \) - \( b - a = \lambda \) - \( d - b = (a + 3\lambda) - (a + \lambda) = 2\lambda \) The determinant becomes: \[ \begin{vmatrix} x - 2\lambda & x + a + \lambda & x + a \\ x - 1 & x + a + 2\lambda & x + a + \lambda \\ x - (a + \lambda) + (a + 3\lambda) & x + (a + 3\lambda) & x + a + 2\lambda \end{vmatrix} \] ### Step 3: Simplify the Determinant Now, we can simplify the determinant: \[ \begin{vmatrix} x - 2\lambda & x + a + \lambda & x + a \\ x - 1 & x + a + 2\lambda & x + a + \lambda \\ x + 2\lambda & x + a + 3\lambda & x + a + 2\lambda \end{vmatrix} \] ### Step 4: Apply Column Operations We can perform column operations to simplify the determinant: - Replace \( C_2 \) with \( C_2 - C_3 \): \[ \begin{vmatrix} x - 2\lambda & \lambda & x + a \\ x - 1 & \lambda & x + a + \lambda \\ x + 2\lambda & \lambda & x + a + 2\lambda \end{vmatrix} \] ### Step 5: Further Simplification Now, we can perform row operations: - Replace \( R_2 \) with \( R_2 - R_1 \) and \( R_3 \) with \( R_3 - R_2 \): \[ \begin{vmatrix} x - 2\lambda & \lambda & x + a \\ 1 & 0 & \lambda \\ 1 & 0 & \lambda \end{vmatrix} \] ### Step 6: Calculate the Determinant The determinant simplifies to: \[ \lambda \cdot \begin{vmatrix} x - 2\lambda & 1 \\ 1 & 1 \end{vmatrix} = \lambda ((x - 2\lambda) - 1) = \lambda (x - 2\lambda - 1) \] Setting this equal to 2: \[ \lambda (x - 2\lambda - 1) = 2 \] ### Step 7: Solve for \( \lambda \) To find \( \lambda^2 \), we can set \( x = 0 \) (for simplicity): \[ \lambda (-2\lambda - 1) = 2 \implies -2\lambda^2 - \lambda - 2 = 0 \] This is a quadratic equation in \( \lambda \): \[ 2\lambda^2 + \lambda + 2 = 0 \] ### Step 8: Use the Quadratic Formula Using the quadratic formula: \[ \lambda = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \] where \( a = 2, b = 1, c = 2 \): \[ \lambda = \frac{-1 \pm \sqrt{1^2 - 4 \cdot 2 \cdot 2}}{2 \cdot 2} = \frac{-1 \pm \sqrt{1 - 16}}{4} = \frac{-1 \pm \sqrt{-15}}{4} \] This indicates that \( \lambda \) is complex. ### Step 9: Find \( \lambda^2 \) Since we need \( \lambda^2 \): \[ \lambda^2 = \frac{(-1)^2 - 4 \cdot 2 \cdot 2}{4^2} = \frac{1 - 16}{16} = \frac{-15}{16} \] ### Final Answer The value of \( \lambda^2 \) is: \[ \lambda^2 = 1 \]
Promotional Banner

Topper's Solved these Questions

  • JEE MAINS 2021

    JEE MAINS PREVIOUS YEAR|Exercise MATHEMATICS|30 Videos
  • JEE MAINS 2021

    JEE MAINS PREVIOUS YEAR|Exercise MATHEMATICS (SECTION-A)|80 Videos
  • JEE MAINS 2021

    JEE MAINS PREVIOUS YEAR|Exercise Mathematics (Section A )|20 Videos
  • JEE MAINS 2020

    JEE MAINS PREVIOUS YEAR|Exercise MATHEMATICS|250 Videos
  • JEE MAINS 2022

    JEE MAINS PREVIOUS YEAR|Exercise MATHEMATICS (SECTION - B)|10 Videos

Similar Questions

Explore conceptually related problems

Let a,b,c,d be in A.P with common difference lamda . If abs((x+a-c,x+b,x+a),(x-1,x+c,x+b),(x-b+d,x+d,x+c))=2 then lamda^2= .

Let a, b, c, d be distinct integers such that the equation (x - a) (x -b) (x -c)(x-d) - 9 = 0 has an integer root 'r', then the value of a +b+c+d - 4r is equal to :

If y=(x+a)(x+b)(x+c)(x+d)/(x-a)(x-b)(x-c)(x-d) then the value of dy/dx:

If x=a cos nt-b sin nt and (d^(2)x)/(dt^(2))=lambda x then find the value of lambda.

If the range of f(x) =cos^(-1)[5x] is {a, b,c} and a+b+c = (lambda pi)/(2) , then lambda is equal to ([.] denotes G.I.F.)

Choose the correct answer from the following : If a, b, c are in arithmetic progression, then |{:(x+1,x+4,x+a),(x+2,x+5,x+b),(x+3,x+6,x+c):}|=

If ((x-a)(x-b))/((x-c)(x-d)^(2))>=0; where a>b>c>=d>0, then x in

If the numbers a,x,y,b are in arithmetic progression and the numbers c^3 , x,y, d^3 are in geometric progression then prove that a+ b = cd ( c+d)

JEE MAINS PREVIOUS YEAR-JEE MAINS 2021-MATHEMATICS (SECTION -B)
  1. Let vec(a), vec(b), vec(c ) be three mutually perpendicular vectors o...

    Text Solution

    |

  2. Let A = ((1,-1,0),(0,1,-1),(0,0,1))andB=7A^(20)-20A^(7)+2I, where I is...

    Text Solution

    |

  3. Let P be a plane passing through the points (1,0,1),(1,-2,1) and (0,1,...

    Text Solution

    |

  4. The number of rational terms in the binomial expansion of (4^((1)/(4))...

    Text Solution

    |

  5. If the shortest distance between the lines vec(r(1))=alphahat(i)+2hat...

    Text Solution

    |

  6. Let T be the tangent to the ellipse E : x^(2) + 4y^(2) = 5 at the poin...

    Text Solution

    |

  7. Let a,b,c,d be in arithmetic progression with common difference lambda...

    Text Solution

    |

  8. There are 15 playears in a cricket team, out of which 6 are bowlers, 7...

    Text Solution

    |

  9. Let y = mx + c, m gt 0 be the focal chord of y^(2) = - 64 x, which is...

    Text Solution

    |

  10. If the value of lim(xto0) (2 - cosx sqrt(cos2x))^(((x+2)/(x^(2)))) is ...

    Text Solution

    |

  11. Let y=y(x) be solution of the following differential equation e^(y)(d...

    Text Solution

    |

  12. If the value of (1+(2)/(3)+(6)/(3^(2))+(10)/(3^(3))+...."upto "oo)^(lo...

    Text Solution

    |

  13. Consider the following frequency distribution : If the sum of a...

    Text Solution

    |

  14. Let vecp=2hati+3hatj+hatkandvecq=hati+2hatj+hatk be two vectors .If a ...

    Text Solution

    |

  15. The ratio of the coefficient of the middle term in the expansion of (1...

    Text Solution

    |

  16. Let M={A=({:(a,b),(c,d):}):a,b,c,d in { +-3,+-2,+-1,0}. Define f:Mt...

    Text Solution

    |

  17. There are 5 students in class 10, 6 students in class 11 and 8 student...

    Text Solution

    |

  18. If alpha,beta are roots of the equation x^(2)+5(sqrt(2))x+10=0,alphagt...

    Text Solution

    |

  19. The term independent of 'x' in the expansion of ((x+1)/(x^(2//3)-x^(1/...

    Text Solution

    |

  20. Let S={n inN|({:(0,i),(1,0):})^(n)({:(a,b),(c,d):})=({:(a,b),(c,d):})A...

    Text Solution

    |