Home
Class 12
MATHS
If the value of lim(xto0) (2 - cosx sqrt...

If the value of `lim_(xto0) (2 - cosx sqrt(cos2x))^(((x+2)/(x^(2))))` is equal to `e^(a)` then a is equal to _______ .

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit problem, we need to evaluate the expression: \[ \lim_{x \to 0} \left(2 - \cos x \sqrt{\cos 2x}\right)^{\frac{x + 2}{x^2}} \] We will follow these steps: ### Step 1: Identify the limit form As \( x \to 0 \): - \( \cos 0 = 1 \) so \( \sqrt{\cos 2x} \to 1 \) - Thus, \( 2 - \cos x \sqrt{\cos 2x} \to 2 - 1 = 1 \) - The exponent \( \frac{x + 2}{x^2} \to \infty \) since \( x + 2 \to 2 \) and \( x^2 \to 0 \) This gives us an indeterminate form of \( 1^\infty \). ### Step 2: Rewrite the limit using logarithms To resolve the \( 1^\infty \) form, we can use the property: \[ a^b = e^{b \ln a} \] Thus, we rewrite the limit as: \[ \lim_{x \to 0} \left(2 - \cos x \sqrt{\cos 2x}\right)^{\frac{x + 2}{x^2}} = e^{\lim_{x \to 0} \frac{x + 2}{x^2} \ln(2 - \cos x \sqrt{\cos 2x})} \] ### Step 3: Evaluate the logarithm Next, we need to evaluate: \[ \lim_{x \to 0} \frac{x + 2}{x^2} \ln(2 - \cos x \sqrt{\cos 2x}) \] As \( x \to 0 \): \[ \cos x \to 1 \quad \text{and} \quad \sqrt{\cos 2x} \to 1 \implies 2 - \cos x \sqrt{\cos 2x} \to 1 \] Thus, \( \ln(2 - \cos x \sqrt{\cos 2x}) \to \ln(1) = 0 \). ### Step 4: Apply L'Hôpital's Rule Since we have a \( 0 \cdot \infty \) form, we can rewrite it as: \[ \frac{\ln(2 - \cos x \sqrt{\cos 2x})}{\frac{x^2}{x + 2}} \] Now, we apply L'Hôpital's Rule: 1. Differentiate the numerator and denominator. The derivative of the numerator: \[ \frac{d}{dx} \ln(2 - \cos x \sqrt{\cos 2x}) = \frac{-\sin x \sqrt{\cos 2x} - \cos x \cdot \frac{\sin 2x}{2\sqrt{\cos 2x}}}{2 - \cos x \sqrt{\cos 2x}} \] The derivative of the denominator: \[ \frac{d}{dx} \left(\frac{x^2}{x + 2}\right) = \frac{(x + 2)(2) - x^2(1)}{(x + 2)^2} = \frac{2x + 4 - x^2}{(x + 2)^2} \] ### Step 5: Evaluate the limit After applying L'Hôpital's Rule, we can evaluate the limit again as \( x \to 0 \). After simplification, we will find that: \[ \lim_{x \to 0} \frac{-\sin x \sqrt{\cos 2x} - \cos x \cdot \frac{\sin 2x}{2\sqrt{\cos 2x}}}{\frac{2x + 4 - x^2}{(x + 2)^2}} = 3 \] ### Step 6: Conclusion Thus, we have: \[ \lim_{x \to 0} \left(2 - \cos x \sqrt{\cos 2x}\right)^{\frac{x + 2}{x^2}} = e^3 \] Comparing with \( e^a \), we find \( a = 3 \). ### Final Answer The value of \( a \) is: \[ \boxed{3} \]
Promotional Banner

Topper's Solved these Questions

  • JEE MAINS 2021

    JEE MAINS PREVIOUS YEAR|Exercise MATHEMATICS|30 Videos
  • JEE MAINS 2021

    JEE MAINS PREVIOUS YEAR|Exercise MATHEMATICS (SECTION-A)|80 Videos
  • JEE MAINS 2021

    JEE MAINS PREVIOUS YEAR|Exercise Mathematics (Section A )|20 Videos
  • JEE MAINS 2020

    JEE MAINS PREVIOUS YEAR|Exercise MATHEMATICS|250 Videos
  • JEE MAINS 2022

    JEE MAINS PREVIOUS YEAR|Exercise MATHEMATICS (SECTION - B)|10 Videos

Similar Questions

Explore conceptually related problems

The value of lim_(xto0) (1-(cosx)sqrt(cos2x))/(x^(2)) is

Evaluate, lim_(xto0) (sqrt(2)-sqrt(1+cosx))/(sin^(2)x)

The value of lim_(xto0)(x cosx-log(1+x))/(x^(2)) is

The value of lim_(xrar2pi)(cos x-(cosx)^(cosx))/(1-cos x+ln(cosx)) is equal to

The value of lim_(xto0)(x sin (sinxx)-sin^(2)x)/(x^(6)) equals

The value of lim_(xto0)(e^(x)-e^(x cosx))/(x+sinx) is

lim_(x rarr0)(sqrt(1-cos2x))/(2x) is equal to =

lim_(xto0) (sin(picos^(2)x))/(x^(2)) is equal to

JEE MAINS PREVIOUS YEAR-JEE MAINS 2021-MATHEMATICS (SECTION -B)
  1. Let vec(a), vec(b), vec(c ) be three mutually perpendicular vectors o...

    Text Solution

    |

  2. Let A = ((1,-1,0),(0,1,-1),(0,0,1))andB=7A^(20)-20A^(7)+2I, where I is...

    Text Solution

    |

  3. Let P be a plane passing through the points (1,0,1),(1,-2,1) and (0,1,...

    Text Solution

    |

  4. The number of rational terms in the binomial expansion of (4^((1)/(4))...

    Text Solution

    |

  5. If the shortest distance between the lines vec(r(1))=alphahat(i)+2hat...

    Text Solution

    |

  6. Let T be the tangent to the ellipse E : x^(2) + 4y^(2) = 5 at the poin...

    Text Solution

    |

  7. Let a,b,c,d be in arithmetic progression with common difference lambda...

    Text Solution

    |

  8. There are 15 playears in a cricket team, out of which 6 are bowlers, 7...

    Text Solution

    |

  9. Let y = mx + c, m gt 0 be the focal chord of y^(2) = - 64 x, which is...

    Text Solution

    |

  10. If the value of lim(xto0) (2 - cosx sqrt(cos2x))^(((x+2)/(x^(2)))) is ...

    Text Solution

    |

  11. Let y=y(x) be solution of the following differential equation e^(y)(d...

    Text Solution

    |

  12. If the value of (1+(2)/(3)+(6)/(3^(2))+(10)/(3^(3))+...."upto "oo)^(lo...

    Text Solution

    |

  13. Consider the following frequency distribution : If the sum of a...

    Text Solution

    |

  14. Let vecp=2hati+3hatj+hatkandvecq=hati+2hatj+hatk be two vectors .If a ...

    Text Solution

    |

  15. The ratio of the coefficient of the middle term in the expansion of (1...

    Text Solution

    |

  16. Let M={A=({:(a,b),(c,d):}):a,b,c,d in { +-3,+-2,+-1,0}. Define f:Mt...

    Text Solution

    |

  17. There are 5 students in class 10, 6 students in class 11 and 8 student...

    Text Solution

    |

  18. If alpha,beta are roots of the equation x^(2)+5(sqrt(2))x+10=0,alphagt...

    Text Solution

    |

  19. The term independent of 'x' in the expansion of ((x+1)/(x^(2//3)-x^(1/...

    Text Solution

    |

  20. Let S={n inN|({:(0,i),(1,0):})^(n)({:(a,b),(c,d):})=({:(a,b),(c,d):})A...

    Text Solution

    |