Home
Class 12
MATHS
The value of (2 tan ^(-1) ((3)/(5)) + ...

The value of ` (2 tan ^(-1) ((3)/(5)) + sin ^(-1) (( 5)/( 13))) ` is equal to:

A

`(151)/(63)`

B

`(220)/(21)`

C

`(-181)/(69)`

D

`(-291)/(76)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \( 2 \tan^{-1} \left( \frac{3}{5} \right) + \sin^{-1} \left( \frac{5}{13} \right) \), we can follow these steps: ### Step 1: Set Variables Let: \[ \theta = \tan^{-1} \left( \frac{3}{5} \right) \] \[ \alpha = \sin^{-1} \left( \frac{5}{13} \right) \] ### Step 2: Find \( \tan(2\theta) \) Using the double angle formula for tangent: \[ \tan(2\theta) = \frac{2 \tan(\theta)}{1 - \tan^2(\theta)} \] First, we need to find \( \tan(\theta) \): \[ \tan(\theta) = \frac{3}{5} \] Now, calculate \( \tan^2(\theta) \): \[ \tan^2(\theta) = \left( \frac{3}{5} \right)^2 = \frac{9}{25} \] Now substitute into the double angle formula: \[ \tan(2\theta) = \frac{2 \cdot \frac{3}{5}}{1 - \frac{9}{25}} = \frac{\frac{6}{5}}{1 - \frac{9}{25}} = \frac{\frac{6}{5}}{\frac{16}{25}} = \frac{6}{5} \cdot \frac{25}{16} = \frac{30}{16} = \frac{15}{8} \] ### Step 3: Find \( \tan(\alpha) \) From \( \alpha = \sin^{-1} \left( \frac{5}{13} \right) \), we know: \[ \sin(\alpha) = \frac{5}{13} \] Using the Pythagorean theorem to find \( \cos(\alpha) \): \[ \cos(\alpha) = \sqrt{1 - \sin^2(\alpha)} = \sqrt{1 - \left( \frac{5}{13} \right)^2} = \sqrt{1 - \frac{25}{169}} = \sqrt{\frac{144}{169}} = \frac{12}{13} \] Now, calculate \( \tan(\alpha) \): \[ \tan(\alpha) = \frac{\sin(\alpha)}{\cos(\alpha)} = \frac{5/13}{12/13} = \frac{5}{12} \] ### Step 4: Use the Formula for \( \tan(2\theta + \alpha) \) Now we can use the formula: \[ \tan(2\theta + \alpha) = \frac{\tan(2\theta) + \tan(\alpha)}{1 - \tan(2\theta) \tan(\alpha)} \] Substituting the values: \[ \tan(2\theta + \alpha) = \frac{\frac{15}{8} + \frac{5}{12}}{1 - \frac{15}{8} \cdot \frac{5}{12}} \] ### Step 5: Find a Common Denominator Calculate the numerator: \[ \frac{15}{8} + \frac{5}{12} = \frac{15 \cdot 3}{24} + \frac{5 \cdot 2}{24} = \frac{45 + 10}{24} = \frac{55}{24} \] Now calculate the denominator: \[ 1 - \frac{15}{8} \cdot \frac{5}{12} = 1 - \frac{75}{96} = \frac{96 - 75}{96} = \frac{21}{96} \] ### Step 6: Final Calculation Now substitute back into the formula: \[ \tan(2\theta + \alpha) = \frac{\frac{55}{24}}{\frac{21}{96}} = \frac{55}{24} \cdot \frac{96}{21} = \frac{55 \cdot 4}{21} = \frac{220}{21} \] ### Conclusion Thus, the value of \( 2 \tan^{-1} \left( \frac{3}{5} \right) + \sin^{-1} \left( \frac{5}{13} \right) \) is: \[ \frac{220}{21} \]
Promotional Banner

Topper's Solved these Questions

  • JEE MAINS 2021

    JEE MAINS PREVIOUS YEAR|Exercise MATHEMATICS (SECTION-A)|80 Videos
  • JEE MAINS 2021

    JEE MAINS PREVIOUS YEAR|Exercise MATHEMATICS (SECTION-B)|40 Videos
  • JEE MAINS 2021

    JEE MAINS PREVIOUS YEAR|Exercise MATHEMATICS (SECTION -B)|20 Videos
  • JEE MAINS 2020

    JEE MAINS PREVIOUS YEAR|Exercise MATHEMATICS|250 Videos
  • JEE MAINS 2022

    JEE MAINS PREVIOUS YEAR|Exercise MATHEMATICS (SECTION - B)|10 Videos

Similar Questions

Explore conceptually related problems

The value of tan(2tan^(-1)(1/5))

Find the value of sin^(-1) ((3)/(5)) + tan^(-1) ((1)/(7))

2tan ^ (- 1) ((1) / (3)) + sin ^ (- 1) ((4) / (5))

2tan ^ (- 1) ((1) / (2)) + sin ^ (- 1) ((3) / (5)) =

2tan ^ (- 1) ((1) / (2)) + sin ^ (- 1) ((3) / (5)) =

sin[3sin^(-1)((1)/(5))] is equal to

The value of sin^(-1)((3)/(5))+tan^(-1)((1)/(7)) is equal to

tan(sin^(-1)((3)/(5))+cos^(-1)((3)/(sqrt(13)))=

The value of tan^(-1)(1)+cos^(-1)(-(1)/(2))+sin^(-1)(-(1)/(2)) is equal to (pi)/(4)b*(5 pi)/(12)c*(3 pi)/(4)d.(13 pi)/(12)

sin^(-1)((12)/(13))-sin^(-1)((3)/(5)) is equal to

JEE MAINS PREVIOUS YEAR-JEE MAINS 2021-MATHEMATICS
  1. Let P be a variable point on the parabola y = 4x ^(2) +1. Then, the lo...

    Text Solution

    |

  2. If the mean and variance of six observations 7,10, 11, 15 a, b are 10 ...

    Text Solution

    |

  3. The sum of all the local minimum values of the twice differentiable fu...

    Text Solution

    |

  4. If [X] denotes the gratest integer less than or equal to x, then the v...

    Text Solution

    |

  5. Consider the following three statements: (A) If 3 + 3 = 7 then 4 + 3...

    Text Solution

    |

  6. The lines x = ay -1 = z -2 and z = 3 y - 2 = bz-2, (ab ne 0) are copl...

    Text Solution

    |

  7. Consider the line L given by the equation (x -3)/(2) = ( y-1)/( 1) = (...

    Text Solution

    |

  8. If the real part of the complex number (1 - cos theta + 2 i sin theta)...

    Text Solution

    |

  9. The value of (2 tan ^(-1) ((3)/(5)) + sin ^(-1) (( 5)/( 13))) is eq...

    Text Solution

    |

  10. In a triangle ABC, if |vecB C| = 3, |C vecA| = 5 and |vecB A| = 7, the...

    Text Solution

    |

  11. The number of solutions of the equation log ((x + 1)) ( 2x ^(2) + 7x +...

    Text Solution

    |

  12. If the point on the curve y ^(2) = 6x, nearest to the point ( 3, (3)/...

    Text Solution

    |

  13. If lim ( x to 0) (alpha x e ^(x) - beta log (e) (1 + x ) + gamma x ^(2...

    Text Solution

    |

  14. For p gt 0 vector vecv (2) = 2 hati + (p + 1 ) hatj is obtained by r...

    Text Solution

    |

  15. Let a curve y = y (x) be given by the solution of differential equatio...

    Text Solution

    |

  16. Let a function g : [0,4] to R be defined as g (x) ={{:(max,),(0 le t ...

    Text Solution

    |

  17. For k in N ,let (1)/( alpha (alpha +1) (alpha +2) .....(alpha + 20)) =...

    Text Solution

    |

  18. Let {a (n)} ( n -1) ^(oo) be a sequene such that a (1) = 1, a (2) = 1...

    Text Solution

    |

  19. Let A = {a (ij)} be a 3 xx 3 matrix, where a(ij) {{:( (-1) ^( j -i...

    Text Solution

    |

  20. Consider a triangle having vertices A (-2, 3) , B (1, 9) and C ( 3, 8)...

    Text Solution

    |