Home
Class 12
MATHS
Let vec(a) = hat(i) + hat(j) + hat(k), v...

Let `vec(a) = hat(i) + hat(j) + hat(k), vec(b) and vec(c )= hat(j)-hat(k)` be three vectors such that `vec(a) xx vec(b)= vec(c ) and vec(a).vec(b)=1`. If the length of projection vector of the vector `vec(b)` on the vector `vec(a) xx vec(c )` is l, then the vlaue of `3l^(2)` is equal to ____

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to follow these steps: ### Step 1: Define the vectors Let \(\vec{a} = \hat{i} + \hat{j} + \hat{k}\) and \(\vec{c} = \hat{j} - \hat{k}\). We need to find \(\vec{b}\) such that \(\vec{a} \times \vec{b} = \vec{c}\) and \(\vec{a} \cdot \vec{b} = 1\). ### Step 2: Find \(\vec{b}\) We can express \(\vec{b}\) in terms of its components: \[ \vec{b} = x\hat{i} + y\hat{j} + z\hat{k} \] ### Step 3: Calculate \(\vec{a} \times \vec{b}\) Using the determinant formula for the cross product: \[ \vec{a} \times \vec{b} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 1 & 1 & 1 \\ x & y & z \end{vmatrix} \] Calculating the determinant gives: \[ \vec{a} \times \vec{b} = (1z - 1y)\hat{i} - (1z - 1x)\hat{j} + (1y - 1x)\hat{k} = (z - y)\hat{i} - (z - x)\hat{j} + (y - x)\hat{k} \] Setting this equal to \(\vec{c} = \hat{j} - \hat{k}\), we have: \[ (z - y) = 0, \quad -(z - x) = 1, \quad (y - x) = -1 \] ### Step 4: Solve the equations From \(z - y = 0\), we get \(z = y\). From \(-(z - x) = 1\), substituting \(z = y\) gives: \[ -(y - x) = 1 \implies x - y = 1 \implies x = y + 1 \] From \(y - x = -1\), substituting \(x = y + 1\) gives: \[ y - (y + 1) = -1 \implies -1 = -1 \text{ (always true)} \] Thus, we can express \(\vec{b}\) as: \[ \vec{b} = (y + 1)\hat{i} + y\hat{j} + y\hat{k} \] ### Step 5: Use the dot product condition Now, we use the condition \(\vec{a} \cdot \vec{b} = 1\): \[ (1)(y + 1) + (1)(y) + (1)(y) = 1 \implies y + 1 + y + y = 1 \implies 3y + 1 = 1 \implies 3y = 0 \implies y = 0 \] Thus, \(x = 1\) and \(z = 0\), giving us: \[ \vec{b} = 1\hat{i} + 0\hat{j} + 0\hat{k} = \hat{i} \] ### Step 6: Calculate \(\vec{a} \times \vec{c}\) Now we calculate \(\vec{a} \times \vec{c}\): \[ \vec{a} \times \vec{c} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 1 & 1 & 1 \\ 0 & 1 & -1 \end{vmatrix} \] Calculating this determinant gives: \[ \vec{a} \times \vec{c} = (1 \cdot (-1) - 1 \cdot 1)\hat{i} - (1 \cdot (-1) - 1 \cdot 0)\hat{j} + (1 \cdot 1 - 1 \cdot 0)\hat{k} = (-2)\hat{i} + (1)\hat{j} + (1)\hat{k} \] ### Step 7: Find the magnitude of \(\vec{a} \times \vec{c}\) The magnitude of \(\vec{a} \times \vec{c}\) is: \[ |\vec{a} \times \vec{c}| = \sqrt{(-2)^2 + 1^2 + 1^2} = \sqrt{4 + 1 + 1} = \sqrt{6} \] ### Step 8: Calculate the projection length \(l\) The projection length \(l\) of \(\vec{b}\) on \(\vec{a} \times \vec{c}\) is given by: \[ l = \frac{|\vec{b} \cdot (\vec{a} \times \vec{c})|}{|\vec{a} \times \vec{c}|} \] Calculating \(\vec{b} \cdot (\vec{a} \times \vec{c})\): \[ \vec{b} \cdot (\vec{a} \times \vec{c}) = \hat{i} \cdot (-2\hat{i} + \hat{j} + \hat{k}) = -2 \] Thus: \[ l = \frac{|-2|}{\sqrt{6}} = \frac{2}{\sqrt{6}} = \frac{\sqrt{6}}{3} \] ### Step 9: Calculate \(3l^2\) Now we calculate \(3l^2\): \[ l^2 = \left(\frac{2}{\sqrt{6}}\right)^2 = \frac{4}{6} = \frac{2}{3} \] Thus: \[ 3l^2 = 3 \cdot \frac{2}{3} = 2 \] ### Final Answer The value of \(3l^2\) is \(2\). ---
Promotional Banner

Topper's Solved these Questions

  • JEE MAINS 2021

    JEE MAINS PREVIOUS YEAR|Exercise Mathematics Section A|40 Videos
  • JEE MAINS 2021

    JEE MAINS PREVIOUS YEAR|Exercise Mathematics Section B|20 Videos
  • JEE MAINS 2021

    JEE MAINS PREVIOUS YEAR|Exercise MATHEMATICS (SECTION-A)|80 Videos
  • JEE MAINS 2020

    JEE MAINS PREVIOUS YEAR|Exercise MATHEMATICS|250 Videos
  • JEE MAINS 2022

    JEE MAINS PREVIOUS YEAR|Exercise MATHEMATICS (SECTION - B)|10 Videos

Similar Questions

Explore conceptually related problems

Let vec(a) = hat(i) - 2hat(j) + 2hat(k) and vec(b) = 2hat(i) - hat(j) + hat(k) be two vectors. If vec(c) is a vector such that vec(b) xx vec(c) = vec(b) xx vec(a) and vec(c).vec(a) = 1 , then vec(c).vec(b) is equal to :

If vec(a)=2hat(i)+2 hat(j)+3hat(k), vec(b)=-hat(i)+2hat(j)+hat(k) and vec(c)=3hat(i)+hat(j) are three vectors such that vec(a)+t vec(b) is perpendicular to vec(c) , then what is t equal to ?

Let vec(a)= hat(i) +hat(j)+2hat(k) and vec(b)= -hat(i) +2hat(j) +3hat(k) . Then the vector product (vec(a) +vec(b)) xx ((vec(a) xx ((vec(a)-vec(b)) xx vec(b))) xx vec(b)) is equal to

If vec(a)=5hat(i)-hat(j)-3hat(k) and vec(b)=hat(i)+3hat(j)-5hat(k) , then show that the vectors (vec(a)+vec(b)) and (vec(a)-vec(b)) are perpendicular.

If vec(a)=7hat(i)-2hat(j)+3hat(k), vec(b)=hat(i)-hat(j)+2hat(k), vec(c )=2hat(i)+8hat(j) , then find vec(a).(vec(b)xx vec(c )) and (vec(b)xx vec(c )).vec(a) .

If vec(a)=2hat(i)-3hat(j)-hat(k), vec(b)=hat(i)+4hat(j)-2hat(k) , then what is (vec(a)+vec(b))xx(vec(a)-vec(b)) equal to ?

If vec(a) = hat(i) + 2 hat(j) + 3 hat(k) and vec(b) = 2 hat(i) + 3 hat(j) + hat(k) , find a unit vector in the direction of ( 2 vec(a) + vec(b)) .

If vec a=hat i+hat j+hat k and vec b=hat j-hat k, find a vector vec c such that vec a x vec c=vec b and vec a*vec c=3

If vec(a) = hat(i) + hat(j) + hat(k), vec(b) = hat(i) - hat(j) + hat(k) and vec(c )= hat(i) + hat(j) - hat(k) , then what is vec(a) xx (vec(b)+ vec(c )) + vec(b) xx (vec(c ) + vec(a)) + vec(c ) xx (vec(a) + vec(b)) is equal to ?

If vec(a)=4hat(i)-hat(j)+hat(k) and vec(b)=2hat(i)-2hat(j)+hat(k) , then find a unit vector parallel to the vector vec(a)+vec(b) .

JEE MAINS PREVIOUS YEAR-JEE MAINS 2021-MATHEMATICS (SECTION-B)
  1. If the lines (x-k)/(1) = (y-2)/(2) = (z-3)/(3) and (x+1)/(3) = (y ...

    Text Solution

    |

  2. For real numbers alpha and beta, consider the following system of line...

    Text Solution

    |

  3. Let vec(a) = hat(i) + hat(j) + hat(k), vec(b) and vec(c )= hat(j)-hat(...

    Text Solution

    |

  4. If (log)3 2,(log)3(2^x-5)a n d(log)3(2^x-7/2) are in arithmetic progre...

    Text Solution

    |

  5. Find the domain of function f(x)=(log)4[(log)5{(log)3(18 x-x^2-77}]

    Text Solution

    |

  6. Let f(x)= |(sin^(2)x,-2+cos^(2)x,cos2x),(2+sin^(2)x,cos^(2)x,cos2x),(s...

    Text Solution

    |

  7. Let F:[3,5] rarr R be a twice differentiable function on (3,5) such th...

    Text Solution

    |

  8. Let a plane p passes through the point (3,7,-7) and contain the line ,...

    Text Solution

    |

  9. Let S= {1,2,3,4 5,6, 7}. Then the number of possible functions f: S ra...

    Text Solution

    |

  10. If y= y(x), y in [0, (pi)/(2)) is the solution of the differential equ...

    Text Solution

    |

  11. Let f: [0,3] rarr R be defined by f(x)= "min" {x-[x], 1+[x]-x} where [...

    Text Solution

    |

  12. Let vec(a) = hat(i) - alpha hat(j) + beta hat(k) , vec(b) = 3 hat(i) ...

    Text Solution

    |

  13. Find the distance of the point P3,\ 4,\ 4) from the point where the li...

    Text Solution

    |

  14. If the real part of the complex number z = ( 3 + 2 i cos theta)/( 1 -...

    Text Solution

    |

  15. Let E be an ellipse whose axes are parallel to the co-ordinates axes, ...

    Text Solution

    |

  16. If int (0) ^(pi) ( sin ^(3) x) e^(- sin^(2)x)dx = alpha - (beta)/( e)...

    Text Solution

    |

  17. Find number of real roots of equation e^(4x) + e^(3x) - 4e^(2x) + e^(x...

    Text Solution

    |

  18. Let y = y (x) be the solution of the differential equation dy = e^(a...

    Text Solution

    |

  19. Let n be a non - negative integer . Then the number of divisors of the...

    Text Solution

    |

  20. Let A = { n in N | n^(2) le n + 10,000 } B = { 3k + 1 | k in N } and ...

    Text Solution

    |