Home
Class 12
MATHS
Let F:[3,5] rarr R be a twice differenti...

Let `F:[3,5] rarr R` be a twice differentiable function on (3,5) such that `F(x)= e^(-x) int_(3)^(x) (3t^(2)+2t+4F'(t)) dt`. If `F'(4)= (alpha e^(beta)-224)/((e^(beta)-4)^(2))`, then `alpha+beta` is equal to _____

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to analyze the given function and its properties step by step. ### Step 1: Understand the given function We have the function defined as: \[ F(x) = e^{-x} \int_{3}^{x} (3t^2 + 2t + 4F'(t)) dt \] ### Step 2: Differentiate both sides To find \( F'(x) \), we will differentiate both sides using the product rule and the Fundamental Theorem of Calculus: \[ F'(x) = \frac{d}{dx} \left( e^{-x} \int_{3}^{x} (3t^2 + 2t + 4F'(t)) dt \right) \] Using the product rule: \[ F'(x) = e^{-x} \cdot \left( 3x^2 + 2x + 4F'(x) \right) - e^{-x} \int_{3}^{x} (3t^2 + 2t + 4F'(t)) dt \] ### Step 3: Evaluate \( F(3) \) To find \( F(3) \), we substitute \( x = 3 \) into the equation: \[ F(3) = e^{-3} \int_{3}^{3} (3t^2 + 2t + 4F'(t)) dt = 0 \] This is because the integral from 3 to 3 is zero. ### Step 4: Substitute \( F(3) \) back into the equation Now we substitute \( F(3) = 0 \) into the equation for \( F(x) \): \[ F(x) = e^{-x} \left( \int_{3}^{x} (3t^2 + 2t) dt + 4 \cdot 0 \right) = e^{-x} \left( \int_{3}^{x} (3t^2 + 2t) dt \right) \] ### Step 5: Calculate the integral Now we compute the integral: \[ \int (3t^2 + 2t) dt = t^3 + t^2 + C \] Evaluating from 3 to \( x \): \[ \int_{3}^{x} (3t^2 + 2t) dt = \left[ t^3 + t^2 \right]_{3}^{x} = (x^3 + x^2) - (27 + 9) = x^3 + x^2 - 36 \] ### Step 6: Substitute back into \( F(x) \) Thus, we have: \[ F(x) = e^{-x} (x^3 + x^2 - 36) \] ### Step 7: Differentiate \( F(x) \) to find \( F'(x) \) Now we differentiate \( F(x) \): \[ F'(x) = e^{-x} (3x^2 + 2x - 36) - e^{-x} (x^3 + x^2 - 36) \] This simplifies to: \[ F'(x) = e^{-x} \left( (3x^2 + 2x - 36) - (x^3 + x^2 - 36) \right) \] \[ = e^{-x} \left( -x^3 + 2x^2 + 2x \right) \] ### Step 8: Evaluate \( F'(4) \) Now we substitute \( x = 4 \): \[ F'(4) = e^{-4} \left( -4^3 + 2 \cdot 4^2 + 2 \cdot 4 \right) \] Calculating: \[ = e^{-4} \left( -64 + 32 + 8 \right) = e^{-4} (-24) \] ### Step 9: Relate \( F'(4) \) to the given expression We know: \[ F'(4) = \frac{\alpha e^{\beta} - 224}{(e^{\beta} - 4)^2} \] Setting this equal to our expression for \( F'(4) \): \[ -24 e^{4} = \frac{\alpha e^{\beta} - 224}{(e^{\beta} - 4)^2} \] ### Step 10: Identify \( \alpha \) and \( \beta \) From the equation, we can see that \( \alpha = -24 \) and \( \beta = 4 \). ### Step 11: Calculate \( \alpha + \beta \) Thus, we find: \[ \alpha + \beta = -24 + 4 = -20 \] ### Final Answer The value of \( \alpha + \beta \) is: \[ \boxed{-20} \]
Promotional Banner

Topper's Solved these Questions

  • JEE MAINS 2021

    JEE MAINS PREVIOUS YEAR|Exercise Mathematics Section A|40 Videos
  • JEE MAINS 2021

    JEE MAINS PREVIOUS YEAR|Exercise Mathematics Section B|20 Videos
  • JEE MAINS 2021

    JEE MAINS PREVIOUS YEAR|Exercise MATHEMATICS (SECTION-A)|80 Videos
  • JEE MAINS 2020

    JEE MAINS PREVIOUS YEAR|Exercise MATHEMATICS|250 Videos
  • JEE MAINS 2022

    JEE MAINS PREVIOUS YEAR|Exercise MATHEMATICS (SECTION - B)|10 Videos

Similar Questions

Explore conceptually related problems

If e^-x int_3^x{3t^2+2t+4f'(t)}dt=f(x) and f'(4)=(alphae^beta-224)/(e^beta-4)^2 then value of (alpha+beta)

if f be a differentiable function such that f(x) =x^(2)int_(0)^(x)e^(-t)f(x-t). dt. Then f(x) =

Let f:[0,4]rarr R be a differentiable function then for some alpha,beta in (0,2)int_(0)^(4)f(t)dt

Let f:RtoR be a differentiable function such that f(x)=x^(2)+int_(0)^(x)e^(-t)f(x-t)dt . f(x) increases for

If F(x) =(1)/(x^(2))int_(4)^(x) [4t^(2)-2F'(t)]dt then F'(4) equals

Let f(x) be a differentiable function such that f(x)=x^(2)+int_(0)^(x)e^(-t)f(x-t)dt then int_(0)^(1)f(x)dx=

Let f:R rarr R be a differentiabe function satisfying f(x)=x^(2)+3int_(0)^(x^(1/3))e^(-t^3)t^(2)*f(x-t^(3))dt Then find f(x) is

Let f:R to R be a differentiable function such that f(2)=2 . Then, the value of lim_(xrarr2) int_(2)^(f(x))(4t^3)/(x-2) dt , is

JEE MAINS PREVIOUS YEAR-JEE MAINS 2021-MATHEMATICS (SECTION-B)
  1. For real numbers alpha and beta, consider the following system of line...

    Text Solution

    |

  2. Let vec(a) = hat(i) + hat(j) + hat(k), vec(b) and vec(c )= hat(j)-hat(...

    Text Solution

    |

  3. If (log)3 2,(log)3(2^x-5)a n d(log)3(2^x-7/2) are in arithmetic progre...

    Text Solution

    |

  4. Find the domain of function f(x)=(log)4[(log)5{(log)3(18 x-x^2-77}]

    Text Solution

    |

  5. Let f(x)= |(sin^(2)x,-2+cos^(2)x,cos2x),(2+sin^(2)x,cos^(2)x,cos2x),(s...

    Text Solution

    |

  6. Let F:[3,5] rarr R be a twice differentiable function on (3,5) such th...

    Text Solution

    |

  7. Let a plane p passes through the point (3,7,-7) and contain the line ,...

    Text Solution

    |

  8. Let S= {1,2,3,4 5,6, 7}. Then the number of possible functions f: S ra...

    Text Solution

    |

  9. If y= y(x), y in [0, (pi)/(2)) is the solution of the differential equ...

    Text Solution

    |

  10. Let f: [0,3] rarr R be defined by f(x)= "min" {x-[x], 1+[x]-x} where [...

    Text Solution

    |

  11. Let vec(a) = hat(i) - alpha hat(j) + beta hat(k) , vec(b) = 3 hat(i) ...

    Text Solution

    |

  12. Find the distance of the point P3,\ 4,\ 4) from the point where the li...

    Text Solution

    |

  13. If the real part of the complex number z = ( 3 + 2 i cos theta)/( 1 -...

    Text Solution

    |

  14. Let E be an ellipse whose axes are parallel to the co-ordinates axes, ...

    Text Solution

    |

  15. If int (0) ^(pi) ( sin ^(3) x) e^(- sin^(2)x)dx = alpha - (beta)/( e)...

    Text Solution

    |

  16. Find number of real roots of equation e^(4x) + e^(3x) - 4e^(2x) + e^(x...

    Text Solution

    |

  17. Let y = y (x) be the solution of the differential equation dy = e^(a...

    Text Solution

    |

  18. Let n be a non - negative integer . Then the number of divisors of the...

    Text Solution

    |

  19. Let A = { n in N | n^(2) le n + 10,000 } B = { 3k + 1 | k in N } and ...

    Text Solution

    |

  20. If A = [(1,1,1),(0,1,1),(0,0,1)] and M = A + A^(2) + A^(3) + . . . . ...

    Text Solution

    |